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With the increasing demand of production, pesticides have been widely used in fruit and vegetable yield. Pesticides are used

to kill insects, fungi and other organisms that harm the growth of crops in order to ensure and promote the growth of crops. In particular,
pesticides are used to control diseases and insects and regulate plant growth and weeding. From the point at this stage, the use of
pesticides in agricultural production is inevitable, and the corresponding, also in rapid increase in the amount of pesticide, pesticide
residue problem is along with the production and extensive use of pesticides, pesticide, especially the organic pesticide used in great
quantities, cause serious problems of pesticide pollution, a serious threat to human health. That is the abuse of pesticides does harm
for environment and human health, particularly in the bioaccumulation effect of pesticide residues on human body, attracting more and
more attention from scientists. Therefore, it's imperative to develop high sensitivity, high selectivity, simple, rapid and low-cost methods
for pesticide residues detection and analysis. The traditional methods of pesticide residue analysis mainly include gas chromatography
high performance liquid chromatography, chromatography-mass spectrometry, etc. These methods have been widely used in pesticide
residue detection, and a series of important achievements have been made. Although with high detection sensitivity, these methods
have some problems such as complicated sample pretreatment, expensive equipment, time-consuming analysis, and the need for
specialized instrument operators and so on, which cannot meet the requirements of rapid and real-time field detection of pesticide
residues. Therefore, researchers in various fields have carried out and strengthened the research on rapid detection technology of
pesticide residues, seeking to develop convenient, sensitive, accurate and stable new pesticide residue detection technology. In this
paper, we mainly reviewed the rapid detection technologies of pesticide in fresh fruits and vegetables in recent years, including new
chromatographic analysis, enzyme inhibition, fluorescence sensor, spectrophotometric and biosensor detection technology, and ana-
lyzed the development status, advantages, and disadvantages of each method, as well as the development prospect of rapid detection

technology in the future.
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Introduction. Modern agricultural production is insepara-
ble from the usage of pesticides to prevent and control all kinds
of crop diseases, insect pests and weeds, following by severe
food safety problems due to pesticide residues (Caria et al., 2021;
Loganathan & Murugan, 2017). There are many kinds of pesti-
cide, including organophosphorus pesticides, organic nitrogen
pesticides (carbamate, triazine and its derivatives). Among them,
organophosphorus and organic nitrogen pesticides have occu-
pied the vast majority of the market because of their short half-
life in the environment, relatively low toxicity to mammals, wide
range of application and low price. As is known to all, residual
pesticides are toxic, which can cause various chronic or acute
poisoning, leading to physiological diseases such as rashes,
asthma, chronic diseases, and neurological diseases (Calaf et
al., 2021; Freire & Koifman, 2012; Li et al., 2021; Steenland et al.,
1994; Upadhayay et al., 2020; Yu et al., 2021). Therefore, to en-
sure the quality and safety of agricultural products, efficient and
rapid pesticide residue detection methods are researched (Wu et
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al., 2021). Traditional detection methods include chromatog-
raphy, chromatography-tandem mass spectrometry and high-
performance liquid chromatography and so on (Golge, 2021).
They can be the preferred detection methods in the formulation
of national standards for pesticide detection in many countries
because of the high repeatability and stable test results. How-
ever, these methods need large detection equipment and specific
operating environment, which are not suitable for the practical
production requirements for the rapid field test.

In recent decades, a variety of low time-consuming, con-
venient and rapid detection methods developed, including but not
limited to new chromatographic analysis, enzyme inhibition, fluo-
rescence sensor, spectrophotometric and biosensor detection
technology (Ninga et al., 2021; Rojas et al., 2021; Saegusa et al.,
2021). What's more, these technologies have made great break-
throughs on the basis of each one, and various rapid detection
technologies tend to be more and more cross-fusion, mutual pen-
etration and advantages superposition (Hao & Wang, 2016). With
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the rapid development of nanomaterials, multi-cross rapid detec-
tion technologies based on nanomaterials have a great break-
through in sensor technology improvement, and biosensor tech-
nology has a huge development advantage in rapid detection
technology (He et al., 2019; Lei et al., 2018; Lu et al., 2018; Wu
etal. 2017).

Current rapid detection technology of pesticides

1. Chromatographic detection techniques

Chromatography, which is highly sensitive and mature,
mainly include gas chromatography, gas chromatography-mass
spectrometry, high performance liquid chromatography and other
technologies (Hao et al, 2010; Tong et al., 2014; Wu et al., 2009).
Although their disadvantage like expensive equipment require-
ment, high technical personnel, complex pretreatment and testing
time, cross-fusion of rapid detection technologies make these
methods showing great potential in the market for rapid detection
recently. Khan (Khan et al., 2018) proposed a pressurized liquid
extraction by ethyl acetate based method for simultaneous anal-
ysis of different pesticide residues in tuber crops, and then selec-
tively identified and quantified the residuals by GC-MS selected
reaction monitoring. They got the limits of quantification with 0.1-
10 ng/g, and recovery rate from 70 % to 120 %.

Chromatographic detection technique is mainly used in
laboratory precision detection. This technology shows high selec-
tivity for organophosphorus pesticides, but its scope of action is
relatively limited. The current research directions are mostly fo-
cused on improving pretreatment technology, enrichment meth-
ods and extraction methods. In other aspects, the method for
rapid detection in the market needs to be further improved.

2. Enzyme inhibition detection techniques

Enzyme inhibition rapid detection method is based on the
inhibitory effect of pesticide residues in food on enzyme. This
technology has the advantages of simple and quick operation and
simple pretreatment, and a variety of simple instruments have
been developed for rapid detection in the market currently. How-
ever, this method has great limitations, and with poor stability due
to many factors to be controlled (Gumpu et al., 2017; Li et al.,
2019). So, there are a large room for improvement in sensitivity
and accuracy. Through the effective combination with the biosen-
sor technology, the sensitivity and accuracy of the enzyme inhi-
bition technology have been greatly improved. After the fusion,
the enzyme inhibition method with the biosensor technology is
more suitable for rapid detection (Badawy, 2021; Singh et al.,
2020). The rapid detection principle of enzyme inhibition method
is relatively simple. By organophosphorus pesticides inhibiting
the activity of acetylcholinesterase, the catalytic process can pro-
duce less H20z, and the oxidation ability can be reduced, result-
ing in visible discoloration reaction of the substrate (Albendin et
al., 2021; Lin et al., 2021). The intensity of colorimetric signal is
an important factor in the research of enzyme inhibition method
to realize the real visual detection. Yang (Yang et al., 2019) pro-
posed an enzyme inhibition method to detect the pesticide resi-
dues of the milk. He established a system to study the inhibitory
reactions of organic phosphorus and aminoformate residues in
milk. The analysis of color reactions of milk showed a good cor-
relation between color intensity and content of tolclofos-methyl,
methamidophos and isoprocarb 1-naphthalenyl methyl carba-
mate, and the detection range of four kinds of pesticides is
0.5~ 1.0 mg/kg.

By combining with the biological sensing technology, the
application scope of the enzyme inhibition method is expanded,
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and the enzyme sensitivity is enhanced. Enzyme inhibition sen-
sor is one of the most widely used rapid detection technique in
the current rapid detection market, but there are still many prob-
lems with its own (Wu et al., 2019). Recently, many researchers
study the selective purification of enzyme, effective oxidation pre-
treatment, colorimetric signal enhancement and false positives
elimination. The sensitivity of enzyme inhibition method is influ-
enced by the purity of the enzyme, the concentration of substrate
and environmental factors, etc., and the stability and sensitivity of
the enzyme suppression method are need to be higher (Arduini
et al., 2019; Pundir et al., 2019; Sgobbi & Machado, 2018).

3. Fluorescence detection techniques

Fluorescence detection method is based on the different
material molecules, the different absorption and reaction of light
wavelength. This technology has high sensitivity, but it is limited
to the luminous pesticide, and the non-luminous pesticide still
needs to be added with fluorescent agent, and is susceptible to
the interference of external factors, with poor adaptability
(Ouyang et al., 2021; Wang et al., 2021). In recent years, through
the fusion of biosensors, this detection technology has also made
great progress (Chen et al, 2021; Han et al., 2021; Liang et al.,
2021; Lin et al., 2021). The fluorescence sensor has the ad-
vantages of simple operation, quick response, high sensitivity
and good reproducibility. The fluorescence sensor consists of two
parts: the fluorescence signal element and the recognition ele-
ment. Enzymes, antibodies, aptamers and molecularly imprinted
polymers (MIP) are combined with nanomaterials to further enrich
the types of fluorescence sensors (Zhou et al., 2018). Carbon
Quantum Dots (CQDs) have been proposed as the photo-sensi-
tizer for this purpose, however the optical properties of pure
CQDs restrict the detection limit of such an approach. Doping is
an effective strategy to introduce novel electronic structure into
the CQDs to solve this problem. using ionic liquids as a single
source, H. Li (Li et al., 2016) proposed a novel N and S co-doped
CQDs by a simple ultrasonic method. The doping in the structure
introduces localized states which can trap photo-excited elec-
trons and enhance their PL lifetime. These quantum dots are suc-
cessfully used as the basis of a simple, efficient sensor for ultra-
sensitive pesticide detection (Limit of Detection = 5 ppb). J. Hou
(Hou et al., 2015) used tyrosinase to catalyze the oxidation of ty-
rosine methyl ester on the surface of carbon dots to correspond-
ing quinone products, which can quench the fluorescence of car-
bon dots, and the enzyme inhibition rate is proportional to the log-
arithm of the methyl parathion concentration in the range
1.0x10-10-1.0x10-4 M with the detection limit (S/N =3) of
4.8x10-11 M.

The combination of fluorescence detection method and bi-
osensor method has greatly promoted the rapid detection of pes-
ticide residues (Hou et al., 2015; Long et al, 2015; Meng et al.,
2013; Upadhyayula, 2012). Q. Luo (Luo et al., 2018) proposed a
simple method for the preparation of highly selective and sensi-
tive fluorescent probes based on Rhodamine B (RB) modified sil-
ver/gold bimetal nanoparticles (RB-Ag/Au NPs). Because that the
coordination ability of Ag/Au NPs and organophosphorus pesti-
cides (Ops) is stronger than that of Ag/Au NPs and RB, RB will
be displaced from the Ag/Au NPs surface, accompanied by the
fluorescence recovery of RB. It can be applied to the determina-
tion of OPs in real fruit and water samples with the limit of detec-
tion (LOD) as low as 0.0018 ng/mL.

4. Spectrophotometric colorimetry techniques
Colorimetry determines the content of components to be
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measured by measuring the color depth of colored substance so-
lution (Kostelnik & Pohanka, 2018; Liu et al., 2012). This method
has high sensitivity and selectivity, and the reaction product is
stable. In recent years, more and more researchers have com-
bined spectrophotometric colorimetry with new sensors, and the
newly emerging sensing materials have greatly improved the de-
tection sensitivity of spectrophotometric technology. A. Kodir
(Kodir et al., 2016) developed a novel pesticide colorimetric sen-
sor based on L-cysteine-modified silver nanoparticles (L-cys-
AgNPs). By reducing the silver nitrate solution in the presence of
Diospyros blancoi leaf infusion, and then mixing with the I-cyste-
ine solution, the colorimetric sensor was prepared. In the pres-
ence of cypermethrin, the color of I-cys-agnps was obvious, and
the peak absorbance decreased from 1.15t0 0.17.

The optical colorimetric sensor synthesized from gold na-
noparticles has high sensitivity (Li, et al., 2018). Moreover, the
gold nanoparticles are stable, and the reaction with pesticides
can make the gold nanoparticles aggregate and produce visible
color changes (Bettazzi et al., 2021; Hua et al., 2021; Ma et al.,
2021; Vilian et al., 2021; Wang et al., 2021). Using this principle,
Bala (Bala et al., 2016) built a colorimetric apparatus based on
gold nanoparticles to measure the phosphorous in a mixture. The
results showed that the linear relationship was good within the
concentration range of the uv-vis wavelength from 0.01 nm to
1.3 mm, and the detection limit was 1.3 mm, indicating a high
sensitivity. Recently, biosensors based on nanomaterials have
developed rapidly in pesticide detection, and more and more new
nanomaterials have been used to prepare electrochemical bio-
sensors. By Introduction of nanomaterials It greatly promoted the
development of the biosensor technology, and with the progress
of material science, all kinds of polymer and nano materials com-
bine to form nanocomposites are also solved the traditional bio-
logical sensing technology stability and sensitivity is not high
question, nanometer materials to make biological sensing tech-
nology has entered a new period of development.

5. Biosensor techniques

Biosensor techniques generally use enzymes, antigens,
antibodies, cells and other active sensitive materials as recogni-
tion elements (Silva et al., 2020; Tang et al., 2020). The change
in concentration will be converted into electrical signals after
recognition and then displayed and recorded by amplification.
Recently, biosensors based on nanomaterials have developed
rapidly in pesticide detection, and more and more new nano-
materials have been used to prepare electrochemical biosensors,
which greatly promoted the development of the biosensor tech-
nology (Akdag et al., 2020; Ayat et al., 2021; Chouichit et al.,
2020; Jain et al., 2021; Lah et al., 2021). Although the stability
and sensitivity of traditional biosensors technology is not high, all
kinds of polymer and nanomaterials combine to form nanocom-
posites have solved these questions.

The electrochemical biosensor based on the inhibition of ac-
etylcholinesterase is a promising method for the detection of or-
ganophosphorus. The irreversible oxidation peak of the active
product thiocholine is an important marker for the detection of or-
ganophosphorus (Alex & Mukherjee, 2021; Cao et al., 2020;
Caratelli et al., 2020; Davletshina et al., 2020; Silva et al., 2020;
Singh et al., 2020). Different from traditional organophosphorus
detection methods, this method does not need expensive exper-
imental equipment and well-trained technicians, and the detec-
tion cost is low and efficient. To improve sensor sensitivity and
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reduce detection limits, the researchers used different nano-
materials in the sensor, such as Au nanoparticles (Li & He, 2021;
Lipinska et al., 2021; Rashed et al., 2021; Yang et al., 2021), car-
bon nanotubes (Kathiresan et al., 2021; Li et al., 2021; Qian et al.
2021; Rashid et al., 2021; Siew et al. 2021), graphene (Gan et
al., 2021; Rashid et al., 2021; Siew et al., 2021; Sun et al., 2021;
Zhou et al., 2021) and magnetic nanomaterials (Da Silva & Brett,
2020; Lu et al., 2020; Shen et al., 2021). The large specific sur-
face area and easy modification characteristics of nanomaterials
provide more active sites on the electrode surface, which is more
conducive to full contact with the reactants, thus providing detect-
able electrical signals. Zhao (Zhao et al., 2015) constructed an
ultra-sensitive current sensor by using Au nanoparticles (AuNPs)-
B-cyclodextrin (B-CD) and Prussian blue-chitosan (PB-CS) and
acetylcholinesterase(AChE), and realized the high sensitivity de-
tection of malathion and carbaryl through the synergic action of
multiple components, with detection limit as low as 4.14 pg/mL
and 1.15 pg/mL, respectively. By cross-linking acetylcholinester-
ase onto the IL-GR/C0304 / CHI electrode constructed from ionic
liquid modified graphene (IL-GR) and Co304 nanoparticles,
Y. Zheng (Zheng et al., 2016) was able to effectively reduce the
loss of enzyme activity and improve the detection sensitivity. A
linear relationship between the inhibition percentage (1%) and
logarithm of the concentration of dimethoate was found in the
range from 5.0 x 10-12 to 1.0 x 10-7 M, with a detection limit of
1.0 x 10-13 M (SIN = 3).

In order to further enhance the stability of the biosensors, a
nanocomposite material which can significantly enhance the me-
chanical strength of each component is formed by introducing a
polymer into the nanometer material (Bagheri et al., 2017; Cinti
et al., 2016; Guler et al., 2017; Huang et al., 2010; Huo et al.,
2014; Jeyapragasam & Saraswathi, 2014; Wei & Wang, 2015;
Zheng et al., 2015). New biosensors have developed rapidly, and
the stability and sensitivity of all kinds of biosensors have been
greatly improved, but they are only used for single pesticide and
the detection range still is very small. So, they can't be widely
used for the rapid detection of a variety of organophosphorus
pesticides on the market. The development of nanometer materi-
als made great progress for biological sensor technology in sen-
sitivity and stability, which has significantly outpaced the devel-
opment of other rapid detection technologies (Jiang et al., 2020;
Wang et al., 2016). Therefore, the cross-fusion detection meth-
ods combining with biosensor and other rapid detection technol-
ogies retain the development advantages, and overcome many
limiting factors in the rapid detection technology, making the rapid
detection technology develop rapidly and become perfect.

Conclusions. In recent years, with the improvement of
market requirements for the rapid detection technology of pesti-
cides, organophosphorus pesticides, as an important part of the
pesticide market, whose development speed of the rapid detec-
tion technology is very rapid. There are a wide variety of tradi-
tional detection technologies for pesticide, and each of them have
own pros and cons, with development difficulties (Chen et al.,
2021; C. J. Lietal., 2021; J. J. Li et al., 2021; Liang et al., 2021;
Lin et al., 2021; Teysseire et al., 2021). At present, the rapid de-
tection methods in the pesticide market tend to be more and more
cross-fusion with various detection technologies. With the pro-
gress of science and technology, the development of new nano-
materials also makes great contributions to the improvement of
rapid detection technology. Especially for the biosensor technol-
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ogy, who highly require for new material, the development of na- | difficulties in the development of rapid detection technology have
nomaterials directly promotes the progress of this technology | been overcome. The advantages of rapid detection technology,
(Burratti et al., 2021; Du et al., 2021; M. Liet al., 2021; Ren et al., | such as enzyme inhibition detection technology, fluorescence de-
2021; X. Y. Zhou et al., 2021). As the cross-fusion of a variety of | tection and spectrophotometric detection technology, have been
rapid detection technologies, biosensor technology shows strong | amplified, therefore the rapid detection techniques become more
combination, and is suitable for a variety of rapid detection | extensive and faster (Badawy, 2021; Cao et al., 2020; Singh et
method of combining. Through the combination of biosensor de- | al., 2020; Q. S. Wei et al., 2020; N. Yang et al., 2020).

tection technology and other rapid detection technologies, many
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Ay6oeuk Bonodumup lgaHoeuy, kaHAUAAT CiNbCbKOrOCMOAAPCHKUX HayK, AOLEHT, CyMCbKMiA HaLioHanbHUA arpapHuii YHi-
BepcuteT, M. Cymu, YkpaiHa

Jliy PyHkiaH2, [OKTOp CinbCbKOrocnofapchbkux Hayk, AoueHT, LLkona pecypcis i 0TOUY0HOro cepefoBuLLa, XeHaHbCbKIi iH-
CTUTYT Hayku | TexHonorii, M. XeHaHb, KHP

JHOCHIQ)XEHHS MNPOLECY LBUAKOIO BU3HAYEHHA 3ANULLIKIB MECTULNAIB B OBOYAX TA ®PYKTAX

3i 36inbWeHHAM nonumy Ha 8UPOBHULMEO CirlbCbko20cnodapchbkoi npodykuyil, 36inbuwyembCs sukopucmanrHs necmuyudis,
AKi Ha cb0200HILLHIl OeHb 3abe3neyyomb 36epeXeHHs 8poxaro hpykmig ma 0godig. Mecmuyudu sukopucmosyrms 41151 KOHMPOITO
yucenbHOCMI WKIONUBUX OpeaHi3mie, 3abeanedyroyu mum camMum onmumasbHi ymogu Onisi pocmy ma po3gumKy CinbCbKo20cnooap-
cokux Kynemyp. CydacHe supobHUUMeO cinbcbkozocnodapcekoi npodykyii Hemoxnuee 6es 3acmocysaHHs necmuyudig. Ane 3m08-
XKUeaHHs nid Yac sukopucmarHs necmuyudie 3agdae wkodu HagkonuWHLOMY cepedosuuly ma 300pos to del, 0cobueo HaciOoK
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bioakymynayii necmuyudHUX pe4o8UH 8 opaaHi3Mi NAUHU. ToMy NUMAaHHS CMBOPEHHS 8UCOKOYYMIUBUX, CENEKMUBHUX, NpOCMUX,
weudkux ma Hedopoaux Memodis 8USBNEHHS ma aHani3y 3anuwikie necmuyudie € akmyanbHuM. TpaduyitiHi Memodu aHanisy 3anu-
wkie necmuyudig rpyHmMylomscsa Ha pisHux eudax xpomamozpadii (2azoea, piduHHa), mac-cnekmpomempii mowo. Lli memodu wu-
pOKO 3acmocosyiome 0715 8USIBNIEHHS 3anulwkie necmuyudig. | xo4a 80HU MaMb BUCOKY MOYHICMb, Nopsi0 3 yum € psd Hedorikie:
cknadHa nonepelHs nideomogka 3pa3ka Ao aHaisy, sucoka eapmicmb 0bnadHaHHs, mpydomicmkuli aHanis ma nompeba y cneuia-
JNli3osaHux onepamopax npunadie. Tomy Haykosui y pisHuUX obracmsx nposodsime O0CHIOKEHHS mexHonoail WeudKo2o 8USIBIEHHS
3anuwiie necmuyudig. Y yiti pobomi mu po3ansdaemo mexHonoeii susisieHHs necmuyudis y ceiXux ¢opykmax ma 08oyax 3a OCmaHHi
poku. Po3anadatombscs maki memodu, ik xpomamozpachiyHull aHani3, iHeibysaHHs hepmeHmig, oryopecyeHmHi damyuku, cnekm-
pogpomomempuyHuli ma bioceHcopHul Memodu. [TpoaHarniaogaHo cmaH ix po3guUMKY, nepegasu ma Hedomiku KoXHo20 Memody, a
MaKoxX nepcnekmusu po3gUMKY mexHomoeil WeudKo20 8USBNEHHS 3anuwkie necmuyudig y MalibymHbomy.
Knroyoei cnoea: sanuwku necmuyudie; memodu weudKo2o 8USISNIEHHS; MEXHOIO02iS NePEXPECHO20 CUHME3Y; opyKmu ma

080Yi.

[lama Ha0xo0xeHHs do pedakyii: 01.12.2020 p.
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