Study of basic characteristics of quinoa seeds

Keywords: quinoa, introduction, yield, seed viability, pre-sowing seed treatment.

Abstract

Quinoa crop is considered as a source of healthy nutrition due to its energy and nutritional value. The nutritional parameters of quinoa seeds exceed the characteristics of traditional cereals. The high protein content distinguishes quinoa seeds from other plant food. Quinoa contains all the important amino acids, it is rich in minerals and vitamins. The special chemical composition of grain can ensure the production of gluten-free food products. Quinoa due to its unique chemical composition and lack of gluten, can be used as a valuable raw material for the creation of specialized (gluten-free) products for people suffering from celiac disease and for products of high nutritional value. This crop may be an alternative one  in areas with water deficiency, droughts and salinization, where other crops are unprofitable. Problematic aspects of the crop production are level of seed germination in the field condition, low and unstable yields.

The main condition for the quinoa spread, like other plant species, is the success of the initial phases of plant development. The ability to form in new growing  conditions a crop with certain parameters of standing density provides the possibility of further steps in the beeding process  and technological optimization of crop indicators.

The evolutionary way of the trait formation such as the absence of the seed dormancy period are analyzed, the mechanisms and dynamics of the decrease in the viability of seeds in the modern crop of quinoa are revealed. Significant differences in the seed characteristics of 2019 and 2018 harvest years (storage period of 14 and 28 months, respectively) indicate the difficulty of maintaining the economic indicators of seeds for the 2-nd and subsequent storage years.

Based on the experiment result to determine the dynamics of water absorption of seeds, their reactions to soaking and heating, the basic characteristics of quinoa breeding  samples (perspective for introduction in the zone of the north-eastern forest-steppe of Ukraine) were determined.

It was found that the level of passive water absorption was in the range of 79.7–81.5 % of the mass of dry seeds. The maximum intensity of water absorption was fixed  within 1-st hour. Seeds with a longer storage period  are characterized by  more intense initial water absorption. At  temperature of 18 °C, the total duration of the seed swelling period is 7‒8 hours.

The highest efficiency of seed soaking was noted for seed samples of the 2019 harvest year, compared with which the growth of indicators of germination energy and laboratory germination was + 9.5 and + 5.8 %. The same seed sample had the best parameters according to the results of heating: + 6.9 and + 2.4 % respectively.

References

1. Bazile, D., Jacobsen, S. E., & Verniau, A. (2016). The Global Expansion of Quinoa: Trends and Limits. Frontiers in Plant Science, 7. doi: 10.3389/fpls.2016.00622
2. Jellen, E.N., Maughan, P.J., Fuentes, F. & Kolano, B. A. (2014). Botánica Domesticación y Circulación de Recursos Genétcos. In: Bazile D., Bertero D., Nieto C. (Eds). State of the art reporto n quinoa around the Word in 2013.Oficina Regional de la FAO para América Latina y el Caribe: Santiago, Chile, 11‒35.
3. Jacobsen, S. E., Mujica, A., & Jensen, C. R. (2003). The resistance of quinoa (Chenopodium quinoa Willd) to ad-verse abiotic factors. Food Reviews International, 19(1-2), 99‒109. doi: 10.1081/FRI-120018872
4. Ruiz, K., Biondi, S., Oses, R., Acuña-Rodríguez, I., Antognoni, F., Martinez-Mosqueira, E., Molina-Montenegro, M. (2014). Quinoa biodiversity and sustainability for food security under climate change: A review. Agron Sustain Dev., 34, 349‒359. doi: 10.1007/s13593-013-0195-0
5. Filho, A. M., Pirozi, M.R., Borges, J.T., Pinheiro, Sant'Ana H. M., Chaves, J. B. & Coimbra J. S. (2017). Quinoa: nutri-tional, functional, and antinutritional aspects. Crit Rev Food Sci Nutr., 57(8),1618‒1630. doi: 10.1080/10408398.2014.1001811.
6. Nowak. V, Du, J. & Charrondière, U. R. (2016). Assessment of the nutritional composition of quinoa (Chenopodium quinoa Willd.). Food Chemistry,193, 47‒54. doi: 10.1016/j.foodchem.2015.02.111
7. Stikic, R., Glamoclija, D., Demin, M., Vucelic-Radovic, D. M. O., Jacobsen, S.E. & Milavonic, M. (2012). Agronomical and nutritional evaluation of quinoa seeds (Chenopodium quinoa Willd.) as an ingredient in bread formulations. J. Cereal Sci., 55(2), 132‒138. doi: 10.1016/j.jcs.2011.10.010
8. Dini, I., Schettino, O., Simioli, T. & Dini, A. (2001). Studies on the constituents of Chenopodium quinoa seeds: isola-tion and characterization of new triterpene saponins. Journal of agricultural and food chemistry, 49, 741‒746. doi: 10.1021/jf000971y
9. Dini, I., Tenore, G. C. & Dini, A. (2010). Antioxidant compound contents and antioxidant activity before and after cooking in sweet and bitter Chenopodium quinoa seeds. Lwt ‒ Food Science and Technology. 43. 447‒451. doi: 10.1016/j.lwt.2009.09.010
10. Pereira, E., Encina-Zelada, C., Barros, L., Gonzales-Barron, U., Cadavez, V. C. F. R., & Ferreira, I. (2019). Chemi-cal and nutritional characterization of Chenopodium quinoa Willd (quinoa) grains: A good alternative to nutritious food. Food Chem., 15, 280, 110‒114. doi: 10.1016/j
11. FAO (2012). Food and Agriculture Organization of the United Nations ‒ Statistics. Retrieved 2019 September 2 from [Electronic resource]. Access mode: http://faostat.fao.org
12. Bhargava, A., Shukla, S., Rajan, S., & Ohri, D. (2007). Genetic diversity for morphological and quality traits in qui-noa (Chenopodium quinoa Willd.) germplasm. Genetic Resources and Crop Evolution, 54, 167‒173. doi: 10.1007/s10722-005-3011-0
13. Souza, F. F. J., Devilla, I. A., de Souza, R. T. G., Teixeira, I. R., & Spehar, C. R. (2016). Physiological quality of qui-noa seeds submitted to different storage conditions. African Journal of Agricultural Research, 11(15), 1299‒1308. doi: 10.5897/AJAR2016-10870
14. Spehar, C. R. (2015). Advances and challenges for quinoa production and utilization in Brazil. Chapter XX., 562‒583. FAO & CIRAD State of the art report on quinoa around the world in 2013. (D. Bazile, D. Bertero & C. Nieto). Rome, 605.
15. Burrieza, H. P., López-Fernández, M. P. & Maldonado, S. (2014). Analogous reserve distribution and tissue charac-teristics in quinoa and grass seeds suggest convergent evolution. Frontiers in plant science, 5, 546. doi: 10.3389/fpls.2014.00546
16. Strenske, A., Vasconcelos, E. S., Egewarth, V. A., Herzog, N. F. M., & Malavasi, M. M. (2017). Responses of quinoa (Chenopodium quinoa Willd.) seeds stored under different germination temperatures. Acta Scientiarum. Agronomy, 39(1), 83‒88. doi: 10.4025/actasciagron.v39i1.30989
17. Filho, M. J. (2015). Seed vigor testing: an overview of the past, present and future perspective. Sci. agric. (Pi-racicaba, Braz.), 72(4), 363‒374. doi: 10.1590/0103-9016-2015-0007
18. Flívia, F., Julia, E., Nara, O., Spehar, C. & Thais, F. (2017). Standardizing germination tests for quinoa seeds. Afri-can Journal of Agricultural Research, 12. 155‒160. doi: 10.5897/AJAR2016.11820.
19. Souza, G. M.& Cardoso, V. J. M. (2000). Effects of different environmental stress on seed germination. Seed Sci-ence and Technology. Zurich: Ista, 28(3), 621‒630. [Electronic resource]. Access mode: http://hdl.handle.net/11449/20224
20. Barbieri, G., Stefanello, R., Menegaes, J., Munareto, J. & Nunes, U. (2019). Seed Germination and Initial Growth of Quinoa Seedlings Under Water and Salt Stress. Journal of Agricultural Science, 11(15), 153. doi: 10.5539/jas.v11n15p153
21. Peyghan, K., Golabi, M. & Albaji, M. (2020) Simulation of quinoa (Chenopodium quinoa) yield and soil salinity under salinity and water stress using the SALTMED model. Communications in Soil Science and Plant Analysis, 51(18), 2361‒2376.
22. Adolf, V. I., Shabala, S., Andersen, M. N., Razzaghi, F. & Jacobsen, S. E. (2012). Varietal differences of quinoa’s tolerance to saline conditions. Plant Soil, 357, 117‒129. doi: 10.1007/s11104-012-1133-7
23. Cocozza, C., Pulvento, C., Lavini, A., Riccardi, M., d’Andria, R., & Tognetti, R. (2013). Effects of increasing salinity stress and decreasing water availability on ecophysiological traits of quinoa (Chenopodium quinoa W.) grown in a mediterra-nean-type agroecosystem. Journal of Agronomy and Crop Science, 199, 229‒240. doi: 10.1111/jac.12012
24. Eisa, S., Eid, M.A., El-Samad, S.A., Hussin, S., Abdel-Ati, A.A., El-Bordeny, N., Ali, S.H., Al-Sayed, H.M.A, Lotfy, M.E., Masoud, A., El-Naggar, A.M., & Ebrahim, M. (2017). Chenopodium quinoa Willd. A new cash crop halophyte for saline regions of Egypt. Australian Journal of Crop Science, 11(03), 343‒351. doi: 10.21475/ajcs.17.11.03.pne316
25. Qureshi, A. & Daba, A. (2020). Evaluating Growth and Yield Parameters of Five Quinoa (Chenopodium quinoa W.) Genotypes Under Different Salt Stress Conditions. Journal of Agricultural Science, 12(3), 128. doi: 10.5539/jas.v12n3p128
26. Melgarejo, L. M. (2010). Experimentos en fisiología vegetal (U. N. de Colombia, Ed.). Bogotá.
27. Sosa‐Zuniga, V., Brito, V., Fuentes, F., & Steinfort, U. (2017). Phenological growth stages of quinoa (Chenopodium quinoa) based on the BBCH scale. Annals of Applied Biology, 171(1), 117‒124. doi: 10.1111/aab.12358
28. Sabongari, S. & Aliero, B. L. (2004). Effects of soaking duration on germination and seedling growth of tomato (Ly-copersicum esculentum Mill). African Journal of Biotechnology, 3(1), 47‒51. [Electronic resource]. Access mode: http://www.academicjournals.org/AJB ISSN
29. Bewley, J. D., Bradford, K. J., Hilhorst, H.W.M. & Nonogaki, H. (2013). Seeds: Physiology of development, germina-tion and dormancy(3ed.). New York: Springer. Germination. 133‒181.
30. Shin, Seung-Ku; Ryu, Myung-Hyun & Lee, Chul-Hwan (2005). Effect of soaking duration and incubation tempera-ture in drum priming on germination of tobacco seed CORESTA Meeting, Agronomy/Phytopathology, Santa Cruz do Sul, APOST 30.
31. Macdonald, Idu & Asotie, Conrad Omonhinmin (1999). Effect of oven ‒ heat and boiling on the germination and seedling development of Dichrostachys cinerea (L) Wight and Arn (Fabaceae). Agronomie, EDP Sciences, 19(8), 671‒676.
32. Noorhosseini, S. A., Jokar, N. K. & Damalas, C. A. (2018). improving seed germination and early growth of garden cress (Lepidium sativum) and basil (Ocimum basilicum) with hydro-priming. J Plant Growth Regul, 37, 323–334. doi: 10.1007/s00344-017-9728-0
33. Esmailpour, A. & Van Damme, P. (2014). Evaluation of Seed Soaking Times on Germination Percentage, Germina-tion Rate and Growth Characteristics of Pistachio Seedlings. Acta Horticulturae. doi: 10.17660/ActaHortic.2016.1109.17.
34. Lin, J.M. & Sung, Jih. (2001). Pre-sowing treatments for improving emergence of bitter gourd seedlings under opti-mal and sub-optimal temperatures. Seed Science and Technology, 29, 39‒50.
35. Beatriz, G. (2015). Structural aspects of dormancy in quinoa (Chenopodium quinoa): Importance and possible ac-tion mechanisms of the seed coats; Cambridge University Press; Seed Science Research, 25(3), 267‒275. [Electronic re-source]. Access mode: http://hdl.handle.net/11336/44200
Published
2020-02-24
How to Cite
Trotsenko, V., Melnyk, A., & Trotsenko, N. (2020). Study of basic characteristics of quinoa seeds. Bulletin of Sumy National Agrarian University. The Series: Agronomy and Biology, 39(1), 71-77. https://doi.org/10.32782/agrobio.2020.1.9