Basis for the breeding of low-Cd wheat varieties

Keywords: wheat, cadmium, absorption, transport, distribution, tolerance mechanism, molecular mechanisms.

Abstract

Among heavy metals, cadmium (Cd) is highly toxic to plants and it is even considered as one of the most toxic elements released into environments at very low concentrations. The development of industry and agriculture have led to the increase of Cd content in soil environment. Cd is released into the soil through application of phosphate fertilizer, animal manures, waste water etc. Cadmium is a non-essential element for plant nutrition but because of its strong toxicity can seriously affects crop growth and development. Due to the high mobility of Cd in soil, the concentration of this element above the critical level can strongly inhibit the growth of plants as well as damage cell structure by interfering with different biochemical and physiological processes. Accumulation of Cd to phytotoxic levels may cause significant growth and yield decrease. If plants are grown in soil contaminated with Cd, they produce products containing this heavy metal, and such plant products are the main source of Cd entering the human body through the trophic chains. Thus, Cd may be an element with high residue, difficult to degrade and easy to accumulate, which may seriously threaten the health of human beings and animals. Cereals such as wheat, rice and maize are the main food crops in the world. Among them, wheat is the source of staple food for more than half of the world's population. Compared with other heavy metals, cadmium is more easily absorbed and accumulated by wheat. This poses a serious threat to human health. Wheat products are the main source of Cd intake by human. Wheat mainly uptakes Cd through the root system, and then it migrates to the above-ground part, and finally accumulates in the wheat grain. Agronomic management practices have been used to reduce Cd uptake and toxicity in wheat. However, these measures could pose some problems, such as large investment, high energy consumption, difficult operation and easy to produce secondary pollution. Low-Cd wheat varieties are the most effective and economic way to reduce the risk of cadmium to human health associated with food consumption. In the traditional breeding process, the selection of Cd-tolerant wheat samples is carried out on the basis of morphological, physiological or biochemical characteristics associated with Cd stress. It is of great significance to study the molecular mechanism of Cd absorption, transport of wheat and the creation of wheat varieties with low Cd accumulation for ensuring food security and food safety. Using molecular breeding technology and their successful integration with traditional breeding methods to select crop varieties with low accumulation of Cd will have a potential impact on the development of low Cd wheat germplasm and important practical significance for ensuring safe agricultural production of Cd contaminated soil. The objective of the present review is to discuss the Cd impact on wheat growth and development, Cd toxicity and tolerance mechanisms and some possible breeding strategies to alleviate Cd toxicity in wheat. The paper reviewed the effects of cadmium on the growth and development of wheat, the absorption, transport and distribution of cadmium in wheat, the tolerance mechanism and the molecular biological level of cadmium in wheat plant. To provide strategies and possible schemes for breeding wheat varieties with low cadmium accumulation

References

1. Adrees, M., Ali, S., Rizwan, M., Ibrahim, M., Abbas, F., Farid, M., & Bharwana, S. A. (2015). The effect of excess copper on growth and physiology of important food crops: a review. Environmental Science and Pollution Research, 22(11), 8148–8162. doi: 10.1007/s11356-015-4496-5
2. Ali, S., Bharwana, S. A., Rizwan, M., Farid, M., Kanwal, S., Ali, Q., & Khan, M. D. (2015). Fulvic acid mediates chromium (Cr) tolerance in wheat (Triticum aestivum L.) through lowering of Cr uptake and improved antioxidant defense system. Environmental Science and Pollution Research, 22(14), 10601–10609. doi: 10.1007/s11356-015-4271-7
3. Bedford, G. (2017). Environmental concentrations of cadmium in the Taranaki environment and implications for policy. In: Science and policy: nutrient management challenges for the next generation. (Eds L.D. Currie and M. J. Hedley). [Electronic resource]. Access mode: http://flrc.massey.ac.nz/publications.html. Occasional Report No. 30. Fertilizer and Lime Research Centre, Massey University, Palmerston North, New Zealand, 7.
4. Clemens, S., Aarts, M.G.M., Thomine S. & Verbruggen, N. (2013). Plant science: The key to preventing low cadmium poisoning. Trends Plant Sci., 18(2), 92‒99. doi: 10.1016/j.tplants.2012.08.003
5. Habiba, U., Ali, S., Farid, M., Shakoor, M. B., Rizwan, M., Ibrahim, M. & Ali, B. (2014). EDTA enhanced plant growth, antioxidant defense system, and phytoextraction of copper by Brassica napus L. Environmental Science and Pollution Research, 22(2), 1534–1544. doi: 10.1007/s11356-014-3431-5
6. Rizwan, M., Ali S., Abbas, T., Zia-Ur-Rehman, M., Hannan, F., Keller, C., Al-Wabel, M.I. & Ok, Y. S. (2016). Cadmium minimization in wheat: A critical review. Ecotoxicol Environ Saf., 130, 43‒53. doi: 10.1016/j.ecoenv.2016.04.001
7. Ashrafzadeh, S., & Leung, D.W.M. (2016). Development of Cadmium-safe crop cultivars: A Mini Review. J. Crop Improv., 30, 107–117. doi: 10.3390/agronomy8110249
8. Irfan, M., Hayat, S., Ahmad, A., & Alyemeni, M. N. (2013). Soil cadmium enrichment: Allocation and plant physiological manifestations. Saudi J. Biol. Sci., 20, 1–10. doi: 10.1016/j.sjbs.2012.11.004
9. Ok, Y. S., Usman, A. R. A., Lee, S. S., Abd El-Azeem, S. A. M., Choi, B., Hashimoto, Y. & Yang, J. E. (2011). Effects of rapeseed residue on lead and cadmium availability and uptake by rice plants in heavy metal contaminated paddy soil. Chemosphere, 85(4), 677–682. doi: 10.1016/j.chemosphere.2011.06.073
10. Gu, Jiguang & Zhou, Qixing (2002). Management and phytoremediation of cadmium contaminated soil. Ecological science, 21(4), 352‒356. doi: 10.4172/2155-6199.1000376
11. Lim, J. E., Ahmad, M., Usman, A. R. A., Lee, S. S., Jeon, W. T., Oh, S.-E., & Ok, Y. S. (2012). Effects of natural and calcined poultry waste on Cd, Pb and As mobility in contaminated soil. Environmental Earth Sciences, 69(1), 11–20. doi: 10.1007/s12665-012-1929-z
12. Ma, J., Chen, Y., Antoniadis, V, Wang, K., Huang, Y., & Tian, H. (2020). Assessment of heavy metal(loid)s contamination risk and grain nutritional quality in organic waste-amended soil. Journal of Hazardous Materials, 399, 23095. doi: 10.1016/j.jhazmat.2020.123095
13. Menglong, X., Yazi, L. Y., Yan, D., Siyuan , Z., Xiaodong, H., Ping, Z., Jieyi, Z., Huaqun, Y., Yili, L., Hongwei, L., Xueduan, L., Lianyang, B., Luhua, J. & Huidan, J. (2020). Bioremediation of cadmium-contaminated paddy soil using an autotrophic and heterotrophic mixture. Electronic Supplementary Material (ESI) for RSC Advances. J. Royal Society of Chemistry, 44. doi: 10.1039/d0ra03935g
14. Chen, X., Liu, Y. M., Zhao, Q. Y., Cao, W.Q., Chen, X. P., & Zou, C.Q. (2020). Health risk assessment associated with heavy metal accumulation in wheat after long-term phosphorus fertilizer application. Environmental Pollution, 262, 114348. doi: 10.1016/j.envpol.2020.114348
15. Ahmad, M., Usman, A. R. A., Lee, S. S., Kim, S.-C., Joo, J. H., Yang, J. E., & Ok, Y. S. (2012). Eggshell and coral wastes as low cost sorbents for the removal of Pb2+, Cd2+ and Cu2+ from aqueous solutions. Journal of Industrial and Engineering Chemistry, 18(1), 198–204.
16. Jamali, M. K., Kazi, T. G., Arain, M. B., Afridi, H. I., Jalbani, N., Kandhro, G.A., Shahand, A. Q., & Baig, J. A. (2009). Heavy metal accumulation in different varieties of wheat (Triticum aestivum L.) grown in soil amended with domestic sewage sludge, J. Hazard. Mater. 164(2‒3), 1386‒1391. doi: 10.1016/j.jhazmat.2008.09.056
17. Jiao, Y., Grant, C.A., & Bailey, L.D. (2004). Effects of phosphorus and zinc fertilizer on cadmium uptake and distribution in flax and durum wheat. J. Sci. Food Agric., 84, 777‒785. doi: 10.1002/jsfa.1648
18. Lu, C. & Tian, H. (2017). Global nitrogen and phosphorus fertilizer use for agriculture production in the past half century: Shifted hot spots and nutrient imbalance. Earth Syst. Sci. Data, 9, 1–33. doi:10.5194/essd-9-181-2017
19. Changaei, N. H., Sharifabad, H., Paknejad, F., Ardakani, M. R. & Hamidi A. (2012). Variation in antioxidant enzymes of 11 wheat cultivars from Iran. Annals Biol. Res., 3(6), 3026‒3028.
20. Dandan, L., Dongmei, Z., Peng, W., Nanyan, W. & Xiangdong, Z. (2011). Subcellular Cd distribution and its correlation with antioxidant enzyme activities in wheat (Triticum aestivum) roots. Ecotoxicol. Environ. Safety, 74, 874‒881. doi: http://10.1016/j.ecoenv.2010.12.006
21. Khan, N. A., Singh, S., & Nazar, R. (2007). Activities of antioxidative enzymes, sulp hurassimilation, photosynthetic activity and growth of wheat (Triticum aestivum) cultivars differing in yield potential under cadmium stress. J. Agron. Crop Sci., 193, 435–444. doi: 10.1626/pps.14.148
22. Küpper, H., & Leitenmaier, B. (2013). Cadmium-accumulating plants. Met Ions Life Sci.,11,373‒393. doi: 10.1007/978-94-007-5179-8_12.
23. Mühling, K. H., & Läuchli, A. (2003). Interaction of NaCl and Cd stress on compartmentation pattern of cations, antioxidant enzymes and proteins in leaves of two wheat genotypes differing in salt tolerance. Plant Soil, 253, 219–231.
24. Abbas, T., Rizwan, M., Ali, S., Zia-Ur-Rehman, M., Qayyum, M. F., Abbas, F., Hannan, F., Rinklebe, J., & Ok, Y. S. (2017). Effect of biochar on cadmium bioavailability and uptake in wheat (Triticum aestivum L.) grown in a soil with aged contamination. Ecotoxicol. Environ. Saf., 140, 37–47. doi: 10.1016/j.ecoenv.2017.02.028
25. Poghosyan, G. H., Mukhaelyan, Zh., H., & Vardevanyan, P. H. Influence of cadmium ions on growth and antioxidant system activity of wheat (Triticum Aestivum L.) (2014). Seedlings, International Journal of Scientific Research in Environmental Sciences, 10, 2, 371‒378. doi: 10.12983/ijsres-2014-p0371-0378
26. Benavides, M. P., Gallego, S. M., & Tomaro, M. L. (2005) Cadmium toxicity in plants. Brazilian Journal of Plant Physiology, 17(1), 21‒34. doi: 10.1590/S1677-04202005000100003
27. Dai, X. P., Feng, L., Ma, X. W., & Zhang, Y. M. (2012). Concentration level of heavy metals in wheat grains and the health risk Assessment to local inhabitants from Baiyin, Gansu, China. Advanced Materials Research, 518(523), 951–956. doi: 10.4028/www.scientific.net/amr.518-523.951
28. Huang, M., Zhou, S., Sun, B., & Zhao, Q. (2008). Heavy metals in wheat grain: Assessment of potential health risk for inhabitants in Kunshan, China. Science of The Total Environment, 405(1‒3), 54–61. doi: 10.1016/j.scitotenv.2008.07.004
29. Aprile, A., Sabella, E., Francia, E., Milc, J., Ronga, D., Pecchioni, N., Ferrari, E., Luvisi, A., Vergine, M., & Bellis, L. D. (2019). Combined effect of cadmium and lead on durum wheat. Int. J. Mol. Sci., 20, 5891. doi: 10.1186/s12870-018-1473-4
30. Bhati, K. K., Alok, A., Kumar, A., Kaur, J., Tiwari, S., & Pandey, A. K. (2016). Silencing of ABCC13 transporter in wheat reveals its involvement in grain development, phytic acid accumulation and lateral root formation. J. Exp.Bot., 67, 4379–4389. doi: 10.1093/jxb/erw224
31. Caverzan, A., Casassola, A., & Brammer, S. P. (2016). Antioxidant responses of wheat plants under stress. Genet Mol Biol., 39(1), 1‒6. doi: 10.1590/1678-4685-GMB-2015-0109
32. Ci ,W., Jiang, D., Wollenweber, B., Dai, T., Jing, Q. & Cao, W. (2010). Cadmium stress in wheat seedlings: growth, cadmium accumulation and photosynthesis. Acta Physiologiae Plantarum, 32(2), 365‒373. doi: 10.1007/s11738-009-0414-0
33. Cuypers, A., Smeets, K., Ruytinx, J., Opdenakker, K., Keunen, E., Remans, T., Horemans, N., Vanhoudt, N., Van Sanden, S., Van Belleghem, F., Guisez, Y., Colpaert, J., & Vangronsveld, J. (2011). The cellular redox state as a modulator in cadmium and copper responses in Arabidopsis thaliana seedlings. J. Plant Physiol., 168, 309–316. doi :10.1016/j.jplph.2010.07.010
34. DalCorso, G., Farinati, S., & Furini, A. (2010). Regulatory networks of cadmium stress in plants. Plant Signal. Be-hav., 5, 663–667. doi: 10.4161/psb.5.6.11425
35. Ranieri, A., Castagna, A., Scebba, F., Careri, M., Zagnoni, I., Predieri, G., Pagliari, M., & di Toppi, L. S. (2005). Oxidative stress and phytochelatin characterisation in bread wheat exposed to cadmium excess. Plant Physiol. Biochem., 43, 45–54. doi: 10.1016/j.plaphy.2004.12.004.
36. Cakmak, I., Welch, R. M., Erenoglu, B., Römheld, V., Norvell, W. A., & Kochian, L. V. (2000). Influence of varied zinc supply on re-translocation of cadmium (109cd) and rubidium (86rb) applied on mature leaf of durum wheat seedlings. Plant and Soil, 219(1-2), 279-284. doi: 10.1023/A:1004777631452
37. Ding, Y. F. & Zhu, C. (2009). The role of micrornas in copper and cadmium homeostasis. Biochemical and Biophysical Research Communications, 386(1), 6–10. doi: 10.1016/j.bbrc.2009.05.137
38. Li, L., Zhang, Y., Ippolito, J. A., Xing, W., Qiu, K. & Wang, Y. (2020). Cadmium foliar application affects wheat Cd, Cu, Pb and Zn accumulation. Environmental Pollution (Barking, Essex:1987), 262, 114329. doi: 10.1016/j.envpol.2020.114329.
39. Maqsood, M. A., Rahmatullah, S., Kanwal, T. Aziz & Ashraf, M. (2009). Evaluation of Zn distribution among grain and straw of twelve indigenous wheat (Triticum aestivum L.) genotypes. Pak. J. Bot., 41(1), 225‒231.
40. Rains, D. W., E. Epstein, Zasoski, R. J. & Aslam, M. (2006). Active silicon uptake by wheat. Plant Soil, 280, 223‒228. doi: 10.1007/s11104-005-3082-x
41. Chan, D. Y. & Hale, B. A. (2004). Differential accumulation of Cd in durum wheat cultivars: uptake and re-translocation as sources of variation. J. Exp. Bot., 55, 2571‒2579. doi: 10.1093/jxb/erh255
42. Hart, J. J., Welch, R. M., Norvel, W. A. & Kochian, L. V. (2006). Characterization of cadmium uptake, translocation and storage in near-isogenic lines of durum wheat that differ in grain cadmium concentration. New Phytologist., 172, 261‒271. doi: 10.1111/j.1469-8137.2006.01832.x
43. Jiang, L., Shao, Y., Li, C X, Li, X. L., Lu, X.Y, & Ma, S. C. (2004). Study on the absorption, distribution and accumulation of cadmium in wheat plants. Henan agricultural sciences, 33(7), 13‒17. (in Chinese with English abstract)
44. Kubo, K., Watanabe Y., Matsunaka, H., Seki, M., Fujita, M., Kawada, N., Hatta, K., & Nakajima, T. (2011). Differences in cadmium accumulation and root morphology in seedlings of Japanese wheat varieties with distinctive grain cadmium concentration. Plant Production Sci., 14, 148‒155. doi: 10.1626/pps.14.148
45. López-Luna, Jaime, Silva-Silva, M. J., Martinez-Vargas, Sergio, Mijangos-Ricárdez, Oscar, Gonzalez, Chavez, Ma del, Carmen; Solís-Domínguez, F.A. & Cuevas-Díaz, M. C. (2016). Magnetite nanoparticle (NP) uptake by wheat plants and its effect on cadmium and chromium toxicological behavior. Science of The Total Environment, 565. doi: 10.1016/j.scitotenv.2016.01.029
46. Black, A., McLaren, R. G., Speir, T. W., Clucas, L. & Condron, L. M. (2014). Gradient differences in soil metal solubility and uptake by shoots and roots of wheat (T. aestivum). Biol. Fertil. Soils., 50, 685–694. doi: 10.1007/s00374-013-0886-3
47. Ci, D., Jiang, D., Dai, T., Jing, Q. & Cao, W. (2009). Effects of cadmium on plant growth and physiological traits in contrast wheat recombinant inbred lines differing in cadmium tolerance. Chemosphere, 77, 1620–1625. doi: 10.1016/j.chemosphere.2009.08.062
48. Harris, N. J. & Taylor, G. J. (2004). Cadmium uptake and translocation in seedlings of near isogenic lines of durum wheat that differ in grain cadmium accumulation. BMC Plant Biol., 4, 4–15. doi: 10.1186/1471-2229-4-4
49. Lin, R., Wang, X., Luo, Y., Du, W., Guo, H., & Yin, D. (2007). Effects of soil cadmium on growth, oxidative stress and antioxidant system in wheat seedlings (Triticum aestivum L.). Chemosphere, 69, 89–98. doi: 10.1016/j.chemosphere.2007.04.041
50. Liu, K., He, L.V. J., Zhang, W., Cao, H. & Dai, Y. (2015). Major factors influencing cadmium uptake from the soil into wheat plants. Ecotoxicology and Environmental Safety, 113, 207–213.
51. Rizwan, M., Meunier, J.-D., Davidian, J.-C., Pokrovsky, O., Bovet, N., & Keller, C. (2016). Silicon alleviates Cd stress of wheat seedlings (Triticum turgidum L. cv. Claudio) grown in hydroponics. Environ. Sci. Pollut. Res., 23, 1414–1427. doi: 10.1007/s11356-015-5351-4.
52. Shafi, M., Bakht, J., Hassan, M. J., Raziuddin, M. & Zhang, G. (2009). Effect of cadmium and salinity stresses on growth and antioxidant enzyme activities of wheat (Triticum aestivum L.). Bull Environ. Contam. Toxicol., 82, 772–776. doi: 10.1007/s00128-009-9707-7
53. Sugiyama, M., Ae, N. & Arao, T. (2007). Accumulation of large amounts of Cd in the root may limit the accumulation of Cd in edible above-ground portions of the plant. Plant Soil, 295, 1–11. doi: 10.3390/ijerph13030289
54. Yourtchi, M. S., & Bayat, H. (2014). Effect of cadmium toxicity on growth, cadmium accumulation and macronutrient content of durum wheat (Dena CV.). Middle East Journal of Applied Sciences, 4(4), 1110‒1117.
55. Bashir, A., Rizwan, M., Rehman, M.Z.U., Zubair, M., Riaz, M., Qayyum, M. F., Alharby, H. F., Bamagoos, A. A., & Ali, S. (2020). Application of co-composted farm manure and biochar increased the wheat growth and decreased cadmium accumulation in plants under different water regimes. Chemosphere, 246, 125809. doi: 10.1016/j.chemosphere.2019.125809
56. Khedr, M. E., Nasseem, M. G., Ali, W. H., & Rashad, M. A. (2019). Compost and vermicompost as soil amendments to immobilize Cu and Cd under wheat growth conditions. Alex. Sci. Exch. J., 40, 705–716. doi: 10.21608/ASEJAIQJSAE.2019.68390
57. Rehman, M.Z.U.; Rizwan, M.; Hussain, A.; Saqib, M.; Ali, S.; Sohail, M. I.; Shafiq, M. & Hafeez, F. (2018). Alleviation of cadmium (Cd) toxicity and minimizing its uptake in wheat (Triticum aestivum) by using organic carbon sources in Cd-spiked soil. Environ. Pollut., 241, 557–565. doi: 10.1016/j.envpol.2018.06.005
58. Wiebe, K., Harris, M. S., Faris, J. D., Clarke, J. M., Knox, R. E., Taylor, G. J., & Xiao, Сhunwen, Luo, Xiuyun, Tian, Yun, & Lu, Xiangyang. (2013). Research progress on bioremediation of heavy metal cadmium pollution. Chemical and biological engineering, 30(8), 1–4. doi: 10.11707/j.1001-7488.20170517
59. Gondor, O.K., Szalai, G., Kovács, V., Janda, T., & Pál, M. (2014). Impact of UV-B on drought-or cadmium-induced changes in the fatty acid composition of membrane lipid fractions in wheat. Ecotoxicol. Environ. Saf., 108, 129–134. doi: 10.1016/j.ecoenv.2014.07.002
60. Zhang, G., Fukami, M. & Sekimoto, H. (2002). Difference between two wheat cultivars in Cd and mineral nutrient uptake under different Cd levels. Chinese Journal of Applied Ecology, 4, 454–458.
61. Sfaxi-Bousbih, A., Chaoui, A. & El Ferjani, E. (2010). Cadmium impairs mineral and carbohydrate mobilization during the germination of bean seeds. Ecotoxicology and Environmental Safety, 73(6), 1123–1129. doi: 10.1016/j.ecoenv.2010.01.005.
62. Huang, X., Duan, S., Wu, Q., Yu, M., & Shabala, S. (2020). Reducing Cadmium accumulation in plants: structure–function relations and tissue-specific operation of transporters in the spotlight. Plants, 9, 223. doi: 10.3390/plants9020223
63. Kubo, K., Kobayashi, H., Fujita, M., Ota, T., Minamiyama, Y., Watanabe,Y., Nakajima, T., & Shinano, T. (2016). Va-rietal differences in the absorption and partitioning of cadmium in common wheat (Triticum aestivum L.). Environmental and Experimental Botany, 124(79). doi: 10.1016/j.envexpbot.2015.12.007
64. Song, Y.; Jin, L.; & Wang, X. (2017). Cadmium absorption and transportation pathways in plants. Int. J. Phytoremediat., 19, 133–141. doi: 10.1080/15226514.2016.1207598
65. Jafarnejadi, A., Shokohfar, A., & Panahpoor, E. (2018). Evaluation of Cd Concentration in Wheat Crop Affected by Cropping System. Jundishapur Journal of Health Sciences. doi: 10.5812/jjhs.14400
66 .Amirjani, M. R. (2012). Effects of cadmium on wheat growth and some physiological factors. Intl. J. Forest, Soil and Erosion., 22(1), 50‒58.
67. Li, Y., Wang, L., Yang, L. & Li, H. (2014). Dynamics of rhizosphere properties and antioxidative responses in wheat under cadmium stress. Ecotoxicology and Environmental Safe, 102, 55–61.
68. Liu, Q., Tjoa, A., & Römheld, V. (2007). Effects of chloride and co-contaminated zinc on cadmium accumulation. Bull. of Environment Cont. and Toxicol., 79(1), 62–65.
69. Özkutlu, F. & Kara, Ş. (2019). Cd concentration of durum wheat grain as influenced by soil salinity. Akademik Ziraat Dergisi., 97-100. doi: 10.29278/azd.593833
70. Shafi, M., Bakht, J., Guoping, Z., Din, M. R., Islam, E., & M. Aman. (2010). Effect of cadmium and salinity stresses on root morphology of wheat. Pak. J. Bot., 42, 2747–2754.
71. Abedi, T., & Mojiri, A. (2020) Cadmium uptake by wheat (Triticum aestivum L.): An Overview. Plants., 9, 500. doi: 10.3390/plants9040500
72. Greger, M. & Lofstedt, M. (2004). Comparison of uptake and distribution of cadmium in different cultivars of bread and durum wheat. Crop Sci., 44, 501‒507 doi: 10.2135/cropsci2004.5010
73. Riesen, O.& Feller, U. (2005). Redistribution of nickel, cobalt, manganese, zinc, and cadmium via the phloem in young and maturing wheat. J. plant Nutr., 28, 421–430. doi: 10.1081/PLN-200049153
74. Page, V., & Feller, U. (2015). Heavy Metals in Crop Plants: Transport and Redistribution Processes on the Whole Plant Level. Agronomy. 2015, 5, 447–463. doi: 10.3390/agronomy503044
75. Cataldo, D. A., McFadden, K. M., Garland, T. R., & Wildung, R. E. (1988). Organic constituents and complexation of Nickel(II), Iron(III), Cadmium(II), and plutonium(IV) in soybean xylem exudates. Plant Physiology, 86(3), 734–739. doi: 10.1104/pp.86.3.734
76. Senden, M. H. M. N., Vand der Meer, A.J.G.M., Verburg, T. G., & Woltetbeek, H. T. (1994). Effects of cadmium on the behaviour of citric acid in isolated tomato xylem cell walls. Journal of Experimental Botany, 45(5), 597–606. doi: 10.1093/jxb/45.5.597)
77. Senden, M. H. M. N., Vand der Meer, A. J. G. M., Verburg ,T. G., & Wolterbeek, H. T. (1995). Citric acid in tomato plant roots and its effect on cadmium uptake and distribution. Plant and Soil, 171 (2), 333–339. [Electronic resource]. Access mode: https://link.springer.com/article/10.1007/BF00010289)
78. Dong, Q., Fangm, J., Huang, F., & Cai, K. (2019). Silicon amendment reduces soil cd availability and cd uptake of two pennisetum species. Int. J. Environ. Res. Public Health, 16, 1624. doi: 10.3390/ijerph16091624
79. Navarro-Leon, E.; Oviedo-Silva, J.; Ruiz, J.M., & Blasco, B. (2019). Possible role of HMA4a TILLING mutants of Brassica rapa in cadmium. Ecotoxicol. Environ. Saf., 180, 88–94. doi: 10.1016/j.ecoenv.2019.04.081
80. Ullah Zaid, Imdad & Zheng, Xin & Li, Xiaofang (2018). Breeding low-cadmium wheat: progress and perspectives. Agronomy, 8, 249. doi: 10.3390/agronomy8110249.
81. Tran, T. A. & Popova, L. P. (2013). Functions and toxicity of cadmium in plants: Recent advances and future prospects. Turk. J. Bot., 37, 1–13. doi: 10.3906/bot-1112-16
82. Zhao, Y. (2011). Cadmium accumulation and antioxidant defence in leaves of Triticum aestivum L. and Zea mays L. African J. Biotechnol., 10(15), 2936‒2943. doi: 10.5897/AJB10.1230
83. Wang, Z., Li, Q., Wu, W., Guo, J., & Yang, Y. (2017). Cadmium stress tolerance in wheat seedlings induced by ascorbic acid was mediated by NO signaling pathways. Ecotoxicol. Environ. Saf., 135, 75–81. doi: 10.1016/j.ecoenv.2016.09.013
84. Wu, F., Zhang, G., & Dominy, P. (2003). Four barley genotypes respond differently to cadmium: lipid peroxidation and activities of antioxidant capacity. Environmental and Experimental Botany, 50(1), 67–78. doi: 10.1016/S0098-8472(02)00113-2)
85. Bai, Yi Xiong, Zheng, Xue Qing,Yao, You Hua, Yao, Xiao Hua, & Wu, Kun Lun (2019). Genetic diversity analysis and comprehensive evaluation of phenotypic traits in hulless barley germplasm resources. Scientia Agricultura Sinica 52(23), 4201‒4214. doi: 10.3864/j.issn.0578-1752.2019.23.002
86. Chen, X. (2004). A MicroRNA as a Translational Repressor of APETALA2 in Arabidopsis Flower Development. Science, 303(5666), 2022–2025. doi: 10.1126/science.1088060
87. Gaillard, S., Jacquet, H., Vavasseur, A., Leonhardt, N. & Forestier, C. (2008). AtMRP6/AtABCC6, an ATP-Binding cassette transporter gene expressed during early steps of seedling development and up-regulated by cadmium in Arabidopsis thaliana. BMC Plant Biol., 8(22). doi: 10.1186/1471-2229-8-22
88. Craciun, A. R., Meyer, C.-L., Chen, J., Roosens, N., De Groodt, R., Hilson, P., & Verbruggen, N. (2012). Variation in HMA4 gene copy number and expression among Noccaea caerulescens populations presenting different levels of Cd tolerance and accumulation. Journal of Experimental Botany, 63(11), 4179–4189. doi: 10.1093/jxb/ers104
89. Grispen, V. M. J., Hakvoort, H. W. J., Bliek, T., Verkleij, J. A. C., & Schat, H. (2011). Combined expression of the Arabidopsis metallothionein MT2b and the heavy metal transporting ATPase HMA4 enhances cadmium tolerance and the root to shoot translocation of cadmium and zinc in tobacco. Environmental and Experimental Botany, 72(1), 71–76. doi: 10.1016/j.envexpbot.2010.01.005
90.Takahashi, R., Ishimaru, Y., Shimo, H., Ogo, Y., Senoura, T., Nishizawa, N. K., & Nakanishi, H. (2012). The OsHMA2 transporter is involved in root-to-shoot translocation of Zn and Cd in rice. Plant, Cell & Environment, 35(11), 1948–1957.
91. Dobrikova, A. G., Yotsova, E. K., Borner, A., Landjeva, S. P. & Apostolova, E. L. (2017). The wheat mutant DELLA-encoding gene (Rht-B1c) affects plant photosynthetic responses to cadmium stress. Plant Physiol. Biochem., 114, 10–18. doi: 10.1016/j.plaphy.2017.02.015
92. Pozniak, C. J. (2010). Targeted mapping of Cdu1, a major locus regulating grain cadmium concentration in durum wheat (Triticum turgidum L. var durum). Theoretical and Applied Genetics, 121(6), 1047–1058. doi: http://10.1007/s00122-010-1370-1
93. Rebekić, A. & Lončarić, Z. (2016). Genotypic difference in cadmium effect on agronomic traits and grain zinc and iron concentration in winter wheat. Emir. J. Food Agric., 28, 772–778. doi: 10.9755/ejfa.2016-05-475.
94. He, C., Ding, Z., Mubeen, S., Guo, X., Fu Hi., & Xin, G. (2020). Evaluation of three wheat (Triticum aestivum L.) cultivars as sensitive Cd biomarkers during the seedling stage. Peerj.,8. doi: 10.7717/peerj.8478.
95. Thomine, S., Lelièvre, F., Debarbieux, E., Schroeder, J. I., & Barbier-Brygoo, H. (2003). AtNRAMP3, a multispecific vacuolar metal transporter involved in plant responses to iron deficiency. The Plant Journal, 34(5), 685–695. doi: 10.1046/j.1365-313x.2003.01760.x
96. Barberon, M., Dubeaux, G., Kolb, C., Isono, E., Zelazny, E., & Vert, G. (2014). Polarization of iron-regulated transporter 1 (irt1) to the plant-soil interface plays crucial role in metal homeostasis. Proceedings of the National Academy of Sciences, 111(22), 8293-8298. doi: 10.1073/pnas.1402262111
97. Kim, Y.-Y., Kim, D.-Y., Shim, D., Song, W.-Y., Lee, J., Schroeder, J. I., & Lee, Y. (2008). Expression of the novel wheat gene tm20 confers enhanced cadmium tolerance to bakers’ yeast. Journal of Biological Chemistry, 283(23), 15893–15902. doi: 10.1074/jbc.M708947200
98. Grant, C. A., Clarke, J. M., Duguid, S., & Chaney, R. L. (2008). Selection and breeding of plant cultivars to minimize cadmium accumulation. Sci. Total Environ., 390(2‒3), 301‒310. doi: 10.1016/j.scitotenv.2007.10.038
99. Wang, S., Wu, W., Liu, F., Liao, R. & Yaqi, Hu. (2017). Accumulation of heavy metals in soil-crop systems: a review for wheat and corn. Environmental Science and Pollution Research, 24(2), 18, 15209‒15225 .doi: 10.1007/s11356-017-8909-5
100. Vitale, J., Adam, B. & Vitale, P. (2020). Economics of wheat breeding strategies: focusing on oklahoma hard red winter wheat. Agronomy, 10, 238. doi: 10.3390/agronomy10020238
101. Randhawa, H. S., Asif, M., Pozniak, C., Clarke, J.M., Graf, R. J., Fox, S. L., Humphreys, D. G., Knox, R. E., DePauw, R. M. & Singh, A. K. (2013). Application of molecular markers to wheat breeding in Canada. Plant Breed., 132, 458–471.
102. Wen, W., Deng, Q., Jia, H., Wei, L., Wei, J., Wan, H., Yang, L., Cao, W. & Ma, Z. (2013). Sequence variations of the partially dominant DELLA gene Rht-B1c in wheat and their functional impacts. J. Exp. Bot., 64, 3299–3312. doi: 10.1093/jxb/ert183
103. Bhati, K. K., Aggarwal, S., Sharma, S., Mantri, S., Singh, S. P., Bhalla, S., Kaur, J., Tiwari, S., Roy, J. K., Tuli, R. & Pandey, A. K. (2014). Differential expression of structural genes for the late phase of phytic acid biosynthesis in developing seeds of wheat (Triticum aestivum L.). Plant Sci., 224, 74–85. doi: 10.1016/j.plantsci.2014.04.009
104. Bhati, K. K., Sharma, S., Aggarwal, S., Kaur, M., Shukla, V., Kaur, J., Mantri, S. & Pandey, A. K. (2015). Genome-wide identification and expression characterization of ABCC-MRP transporters in hexaploid wheat. Front. Plant Sci., 6, 488. doi: 10.3389/fpls.2015.00488
105. Ren, Y., Chen, Y., An, J., Zhao, Z., Zhang, G., Wang, Y., & Wang, W. (2018). Wheat expansin gene TaEXPA2 is involved in conferring plant tolerance to Cd toxicity. Plant Sci., 270, 245–256. doi: 10.1016/j.plantsci.2018.02.022
106. Jian, H., Yang, B., Zhang, A., Ma, J., Ding, Y., Chen, Z., Li, J., Xu, X. & Liu, L. (2018). Genome-Wide Identification of MicroRNAs in Response to Cadmium Stress in Oilseed Rape (Brassica napus L.) Using High-Throughput Sequencing. Int. J. Mol. Science, 19, 1431. doi: 10.3390/ijms19051431
107. Knox, R. E., Pozniak, C. J., Clarke, F. R., Clarke, J. M., Houshmand, S., & Singh, A. K. (2009). Chromosomal location of the cadmium uptake gene (Cdu1) in durum wheat. Genome, 52, 741‒747. doi: 10.1139/G09-042
108. Dai, X., & Zhao, P. X. (2011). Psrnatarget: A plant small RNA target analysis server. Nucleic. Acids Res., 39, 155–159. doi: 10.1093/nar/gkr319
109. Mendoza-Soto, A. B., Sánchez, F., & Hernández, G. (2012). MicroRNAs as regulators in plant metal toxicity response. Frontiers in Plant Science, 3(105), 105. doi: 10.3389/fpls.2012.00105
110. Min Yang, Z. & Chen, J. (2013). A potential role of micrornas in plant response to metal toxicity. Metallomics, 5(9), 1184. doi: 10.1039/c3mt00022b
111. Zhou, Z. S., Song, J. B., & Yang, Z. M. (2012). Genome-wide identification of Brassica napus microRNAs and their targets in response to cadmium. Journal of Experimental Botany, 63(12), 4597–4613. doi: 10.1093/jxb/ers136
112. Wang, F., Wang, Z., & Zhu, C. (2012). Heteroexpression of the wheat phytochelatin synthase gene (TaPCS1) in rice enhances cadmium sensitivity. Acta Biochim. Biophys. Sin., 44, 886–893. doi: 10.1093/abbs/gms073
113. Wang, J., Mao, X., Wang, R., Li, A., Zhao, G., Zhao, J., & Jing, R. (2019). Identification of wheat stress-responding genes and TaPR-1-1 function by screening a cDNA yeast library prepared following abiotic stress. Sci Rep., 9, 141. doi: 10.1038/s41598-018-37859-y
Published
2020-02-24
How to Cite
Wu, L., & Zhatova, H. (2020). Basis for the breeding of low-Cd wheat varieties. Bulletin of Sumy National Agrarian University. The Series: Agronomy and Biology, 39(1), 78-87. https://doi.org/10.32782/agrobio.2020.1.10