Development of biological control of oriental fruit moth and insect immune response induced by entomopathogenic fungi

Keywords: Grapholita molesta (Busck), Beauveria bassiana (Bals.-Criv.) Vuill., innate immune, biological plant protection.

Abstract

The oriental fruit moth, Grapholita molesta (Busck) is a key pest of tree fruit of Europe, Asia, America, Africa, Australia, and New Zealand, which makes a big damage to apple trees, pear tree and the stone fruit of the peach, plum, apricot, nectarine, cherry and so on. It is difficult to control these pests with traditional chemical methods meanwhile with the increasing demand for food safety, biological control method to this pest has attracted more and more people's attentions. Beauveria bassiana is one of the most studied and applied entomopathogenic fungi, can infected and kill the oriental fruit moth as a biological control agent. The entomopathogenic fungi with a wide range hosts and they are harmless to the environment, human and animal. Using entomopathogenic fungi to control pests has many advantages and they have been an important part in biological control of pests, although it still has some natural defects, such as long effective time and easy to be affected by environmental conditions. In order to make good use of it in the future, it is necessary to deeply understand their living conditions and infection mechanism to insects. Entomopathogenic fungi can invades the insects from the body wall through contact directly, but also can through the digestive tract, stomata and wounds and other ways into the insect body. But insects have evolved a strong innate immune system to protect themselves from infection by the pathogens and adverse conditions. When insects are infected by entomopathogenic fungi, their innate immune system will firstly be activated. And the insects will resist the infection by their immune response, which will lead to the reduction of infection efficiency and the control effect. So, it is necessary to study the immune response of insects introduced by entomopathogenic fungi, and it is a hotspot in pest control. This article summarized the occurrence and control technologies of oriental fruit moth, and the research status of entomopathogenic fungus (B. bassiana), finally it summarized the insect immune response induced by entomopathogenic fungi. This will provide a significantly deepened the understanding on mechanisms of insect and entomopathogenic fungi. And it prospected the improvement of effective on biological control of oriental fruit moth by B. bassiana, which provide a theoretical basis for supply better services to plant protection in the future.

References

1. Hill, D. S. (1987). Agricultural insect pests of temperate regions and their control. Cambridge University Press, Cambridge, United Kingdom, 459.
2. Rothschild, G. H. L. & Vickers, R. A. (1991). Biology, ecology and control of the oriental fruit moth. Tortricid Pests: Their Biology, natural Enemies and Control. Elsevier Science publication, 72, 389–412. doi: 110.1038/ng.2007.60
3. Natale, D., Mattiacci, L., Hern, A., Pasqualini, E. & Dorn, S. (2003). Response of female Cydia molesta (Lepidoptera: Tortricidae) to plant derived volatiles. Bulletin of Entomological Research, 93, 335–342. doi: 10.1079/BER2003250
4. Myers, C. T., Hull, L. A. & Krawczyk, G. (2006). Seasonal and cultivar-associated variation in oviposition preference of oriental fruit moth (Lepidoptera: Tortricidae) adults and feeding behavior of neonate larvae in apples. Journal of Economic Entomology, 99(2), 349–358. doi: 10.1603/0022-0493-99.2.349
5. Timm, A. E., Geertsema, H. & Warnich, L. (2008) Population genetic structure of Grapholita molesta (Lepidoptera: Tortricidae) in South Africa. Annals of the Entomological Society of America, 101, 197–203.
6. Bisognin, M., Zanardi, O. Z., Nava, D. E., Arioli, C. J., Botton, M., Garcia, M. S., & Cabezas, M. F. (2012). Burrknots as food source for larval development of Grapholita molesta (Lepidoptera: Tortricidae) on apple trees. Environmental Entomology, 41, 849–854. doi: 10.1603/EN11119
7. Ricietto, A. P. S., Gomis-Cebolla, J., Vilas-Boas, G. T. & Ferre, J. (2016). Susceptibility of Grapholita molesta (Busck, 1916) to formulations of Bacillus thuringiensis, individual toxins and their mixtures. Journal of Invertebrate Pathology, 141, 1–5. doi: 10.1016/j.jip.2016.09.006
8. Kong, W. N., Wang, Y., Jia, X. T., Gao, Y., Fan, R. J., Li, J. & Ma, R. Y. (2019). Emergence and mating behavior of the oriental fruit moth Cydia molesta (Lepidoptera: Tortricidae) and its potential for reproduction. Annales De La Societe entomological De France, 55(5), 446–453. doi: 10.1080/00379271.2019.1657361
9. Zunic, A., Vukovic, S., Lazic, S., Sunjka, D. & Baskovic, D. (2020). The efficacy of novel diamide insecticides in Grapholita molesta suppression and their residues in peach fruits. Plant protection Science, 56(1), 46–51. doi: 10.17221/71/2019-PPS
10. Torriani, M. V. G., Mazzi, D., Hein, S. & Dorn S. (2010). Structured populations of the oriental fruit moth in an agricultural ecosystem. Molecular Ecology, 19(13), 2651–60. doi: 10.1111/j.1365-294X.2010.04711.x
11. Tian, Z., Li, Y., Xing, Y. J., Li, R. C. & Liu, J. Y. (2019). Structural Insights into Two Representative Conformations of the Complex Formed by Grapholita molesta (Busck) Pheromone Binding Protein 2 and Z-8-Dodecenyl Acetate. Journal of Agricultural and Food Chemistry, 67(16), 4425–4434. doi: 10.1021/acs.jafc.9b00052
12. Borchert, D. M., Stinner, R. E., Walgenbach, J. F. & Kennedy, G. G. (2004). Oriental fruit moth (Lepidoptera: Tortricidae) phenology and management with methoxyfenozide in North Carolina apples. Journal of Economic. Entomology, 97(4), 1353–1364. doi: 10.1603/0022-0493-97.4.1353
13. Pinero, J. C. & Dorn, S. (2009). Response of female oriental fruit moth to volatiles from apple and peach trees at three phenological stages. Entomological Experimentalis et Applicate, 131(1), 67–74. doi: 10.1111/j.1570-7458.2009.00832.x
14. Lu, P. F., Huang, L. Q. & Wang, C. Z. (2012). Identification and Field Evaluation of Pear Fruit Volatiles Attractive to the Oriental Fruit Moth, Cydia molesta. Journal of Chemical Ecology, 38(8), 1003–1016. doi: 10.1007/s10886-012-0152-4
15. Zheng, Y., Peng, X., Liu, G. M., Pan, H. Y., Dorn, S. & Chen, M. H. (2013). High Genetic Diversity and Structured Populations of the Oriental Fruit Moth in Its Range of Origin. PLOS ONE, 8(11), 1–12. doi: 10.1371/journal.pone.0078476
16. Kanga, L. H. B., Pree, D. J., Van Lier, J. L. & Walker, G. M. (2003). Management of insecticide resistance in Oriental fruit moth (Grapholita molesta; Lepidoptera: Tortricidae) populations from Ontario. Pest Management Science, 59, 921–927. doi: 10.1002/ps.702
17. Monteiro, L. B., Witt, L. G., Guiloski, I. C., Regis Silvori, D. S. & Helena, S. A. (2020). Evaluation of Resistance Management for the Oriental Fruit Moth (Lepidoptera: Tortricidae) to Insecticides in Brazilian Apple Orchards. Journal of Economic Entomology, 113(3), 1411–1418.
18. Navarro-Roldan, M. A., Bosch, D., Gemeno, C. & Siegwart, M. (2020). Enzymatic detoxification strategies for neurotoxic insecticides in adults of three tortricid pests. Bulletin of Entomological Research, 110(1), 144–154. doi: 10.1017/S0007485319000415
19. Feng, J. G. & Zhang, Y. (1988). Study on control of fruit tree pests by Trichogramma dendrolimi. Knowledge of insects, 6, 344–347. (in Chinese)
20. Sarker, S., Woo, Y.H. & Lim, U. T. (2020). Laboratory Evaluation of Beauveria bassiana ARP14 Against Grapholita molesta (Lepidoptera: Tortricidae). Current Microbiology, 77(9), 2365–2373. doi: 10.1007/s00284-020-02012-4
21. Wang, C. S. & Leger, R. J. S. (2006). A collagenous protective coat enables Metarhizium anisopliae to evade insect immune response. Proceedings of the National Academy of Sciences of the United States of America, 103(17), 6647–6652. doi: 10.1073/pnas.0601951103
22. Xia, J., Zhang C. R., Zhang S., Li, F. F., Feng, M. G., Wang, X. W. & Liu, S.S. (2012). Analysis of Whitefly Transcriptional Responses to Beauveria bassiana Infection Reveals New Insights into Insect-Fungus Interactions. PLOS One, 8(7), e68185. doi: 10.1371/journal.pone. 0068185.
23. Li, Y. S., Zhao, P., Liu, S. P., Dong, Z. M., Chen, J. P., Xiang, Z. H. & Xia, Q. Y. (2012). A novel protease inhibitor in Bombyx mori is involved Beauveria (bassiana. Insect Biochemistry and Molecular Biology, 42(10), 766–775. doi: 10.1016/j.ibmb.2012.07.004
24. Paparazzo, F., Tellier, A., Stephan, W. & Hutter, S. (2015). Survival Rate and Transcriptional Response upon Infection with the Generalist Parasite Beauveria bassiana in a World-Wide Sample of Drosophila melanogaster. PLOS One, 10(7): e0132129. doi: 10.1371/journal.pone.0132129 J.
25. Shen, D. X., Liu, Y, Zhou, F. Wang, G. R. & An, C. J. (2014). Identification of Immunity-Related Genes in Ostrinia furnacalis against Entomopathogenic Fungi by RNA-Seq Analysis. PLOS One, 9(1), e86436. doi: 10.1371/journal.pone.0086436
26. Lee, S. J., Yang, Y. T., Kim, S., Lee, M. R., Kim, J. C.,Park, S. E., Hossain Muktadir, S., Shin, T. Y., Nai, Y. S. & Kim, J.S. (2018). Transcriptional response of bean bug (Riptortus pedestris) upon infection with entomopathogenic fungus, Beauveria bassiana JEF-007. Pest management ence, 75(2), 333–345. doi: 10.1002/ps.5117.
27. Zhang, Y., Tang, M. Y., Dong, Z. M., Zhao, D. C., An, L. N., Zhu, H. T., Xia, Q. Y. & Zhao, P. (2020). Synthesis, secretion, and antifungal mechanism of a phosphatidylethanolamine-binding protein from the silk gland of the silkworm Bombyx mori. International Journal of Biomacromolecules, 149, 1000–1007. doi: 10.1016/j.ijbiomac.2020.01.310
28. Chaudry, G. U. (1956). The development and fecundity of the oriental fruit moth, Grapholotha molesta (busck) under controlled temperatures and humilities. Bulletin of Entomological Research, 46(04), 869–898. doi: 10.1017/S0007485300037111
29. Rings, R. W. (1970). Economic aspects of the biological and control of the oriental fruit moth, Grapholita molesta Busk, in the United States. The Ohio Journal of Science, 70(1), 58.
30. Kirk, H., Dorn, S. & Mazzi, D. (2013). Worldwide population genetic structure of the oriental fruit moth (Grapholita molesta), a globally invasive pest. BMC Ecology, 13, 12. doi: 10.1186/1472-6785-13-12
31. Chen M. X., Luo Y. Q. & Zhao C. J. (2009). Progress in the research on the oriental fruit moth. Journal of the North Garden. 8, 144–147 (in Chinese).
32. Kong, W. N., Wang, Y., Guo, Y. F., Chai, X. H., Li, J. & Ma, R. Y. (2020). Importance of Preovipositional Period of an Oligophagous Moth in Predicting Host Suitability. Journal of Economic Entomology, 113(1), 222–229. doi: 10.1093/jee/toz278
31. Varela, N., Avilla, J., Anton, S. & Gemeno, C. (2011). Synergism of pheromone and host-plant volatile blends in the attraction of Grapholita molesta males. Entomological experiment and application, 141(2), 114–122. doi: 10.1111/j.1570-7458.2011.01171.x
32. Piskorski, R., Ineichen, S. & Dorn, S. (2011). Ability of the Oriental Fruit Moth Grapholita molesta (Lepidoptera: Tortricidae) to Detoxify Juglone, the Main Secondary Metabolite of the Non-host Plant Walnut. Journal of Chemical Ecology, 37(10), 1110–1116. doi: 10.1007/s10886-011-0015-4
33. Du, J., Li, G. W., Xu, X. L. & Wu, J. X. (2015) Development and Fecundity Performance of Oriental Fruit Moth (Lepidoptera: Tortricidae) Reared on Shoots and Fruits of Peach and Pear in Different Seasons. Environmental Entomology, 44(6), 1522–1530. doi: 10.1093/ee/nvv124
34. Myers, C. T., Hull, L. A. & Krawczyk, G. (2007). Effects of orchard host plants (apple and peach) on development of oriental fruit moth (Lepidoptera: Tortricidae). Journal of Economic Entomology, 100(2), 421–430.
35. Yang, X. F., Fan, F., Wang, C. & Wei, G. S. (2016). Where does Grapholita molesta (Busck) (Lepidoptera: Tortricidae) overwinter in adjacent peach, pear and apple orchards? Bulletin of Entomological Research, 106(1), 135–140. doi: 10.1017/S0007485315000887
36. Graillot, B., Blachere-Lopez, C., Besse, S., Siegwart, M. & Lopez-Ferber, M. (2017). Host range extension of Cydia pomonella granulovirus: adaptation to Oriental Fruit Moth, Grapholita molesta. Biocontrol, 62, 19–27. doi: 10.1007/s10526-016-9772-x
37. Li, G. W., Chen, X. L., Sun, Y. Chen, Y. X., Xu, S.C. & Wu, J. X. (2019). Expression profiles and ligand-binding properties of two odorant-binding proteins from Grapholita molesta (Busck) (Lepidoptera: Tortricidae). Journal of Asia Pacific Entomology, 22(4), 1098–1108. doi: 10.1016/j.aspen.2019.09.003
38. Kanga, L. H. B., Pree, D. J., Van Lier, J. L. & Walker, G. M. (2003). Management of insecticide resistance in Oriental fruit moth (Grapholita molesta; Lepidoptera: Tortricidae) populations from Ontario. Pest Management Science, 59, 921–927. doi: 10.1002/ps.702
39. Zhao, J. L., Zhang, Y. Z., Li, J. L., Guo, F. Z. & Chao, D. (2010). IPM Measures of Fruit Borer in Organic Orchard. Journal of Shanxi Agricultural Sciences, 38(5), 39–43 (in Chinese).
40. Zhang, X. Z. (1980). Preliminary report on a study of the oriental fruit moth. Journal of plant protection, 7(4), 254–256 (in Chinese).
41. Peterson, A. & Haeussler, G. J. (1928). Some observations on the number of larval instars of the Oriental peach moth Laspeyresia molesta Busck. Economic Entomology. 21, 843–852.
42. Yokoyama, V. Y., Miller, G. T. & Harvey, J. M. (1987). Development of oriental fruit moth (Lepidoptera: Tortficidae) on a laboratory diet. Journal of Economic Entomology, 80, 272–276.
43. Reichart, G. & Bodor, J. (1972). Biology of the oriental fruit moth (Grapholita molesta Busck) in Hungary. Acta Phytopathologica Academiae Scientiarum Hungaricae, 7, 279–295.
44. Wang, C. Y. (2006). Comprehensive prevention and control of pyridae in yellow pear producing areas in Qinghai. Qinghai Agricultural Technology Extension, 2, 43–44. (in Chinese)
45. Magalhaes, L. C. & Walgenbach, J. F. (2011) Life Stage Toxicity and Residual Activity of Insecticides to Codling Moth and Oriental Fruit Moth (Lepidoptera: Tortricidae). Journal of Economic Entomology, 104(6), 1950–1959. doi: 10.1603/EC11070
46. Wang, H. L., He, H. P., & Gong, L. Z. (2012). Observation on the occurrence dynamic of Grapholita molesta Busk in peach orchard. Hubei Agricultural Science, 51, 4784–4786.
47. Ma, A. H., Li, W. L. & Lu, Z. Y. (2016). The Occurrence Dynamics and Damage Characteristics and Integrated Control of Oriental Fruit Moth in Peach Orchard. Journal of Hebei Agricultural Sciences, 20(4), 27–29 (in Chinese).
48. Li, B., Qin Y. C., & He, L. (2006) Control of pear small heart worms with different attracting core and sweet and sour liquor. Chinese journal of plant protection, 35(6), 285–286. (in Chinese).
49. Zhai, H., Yu, X. M., Ma, Y. N., Zhang, Y. & Wang, D. (2019). Sugar-Acetic Acid-Ethanol-Water Mixture as a Potent Attractant for Trapping the Oriental Fruit Moth (Lepidoptera: Tortricidae) in Peach-Apple Mixed-Planting Orchards. Plant-Basel, 8(10). doi: 10.3390/plants8100401
50. Zhi, Y. R., Ye, X. H. & Lan Y. (2008). Occurrence and prevention measures of the oriental fruit moth in fruit tree mixed planting area. Journal of Southwest Agriculture, 21(4), 1006–1009 (in Chinese).
51. Chen, J. H. (2007). Effects of 48 % Lorsban missible oil on the prevention and control of oriental fruit moth. Deciduous Fruit Tree, (4), 39‒40 (in Chinses).
52. Stelinski, L. L., Il'chev, A. L., & Gut, L. J. (2006). Antennal and behavioral responses of virgin and mated oriental fruit moth (Lepidoptera: Tortricidae) females to their sex pheromone. Annals of the Entomological Society of America, 99(5): 898-904. doi: 10.1603/0013-8746(2006)99[898:AABROV]2.0.CO;2
53. Rodrigues, M. L., Garcia, M. S., Nava, D. E., Botton, M., Parra, J. R. P. & Guerrero, M. (2011). Selection of Trichogramma prestiosun linages for control of Grapholita molesta in peach. Florida Entomologist, 94(3), 398–403. doi: 10.1653/024.094.0303
54. Barros-Parada, W., Ammagarahalli, B., Basoalto, E., Fuentes-Contreras, E. & Gemeno, C. (2018). Captures of oriental fruit moth, Grapholita molesta (Lepidoptera: Tortricidae), in traps baited with host-plant volatiles in Chile. Applied Entomology and Zoology, 53(2), 193–204. doi: 10.1007/s13355-017-0543-7
55. Robledo, N., Rzuffi, R. & Reyes-Prado, H. (2018). Modification of behavioral response in Copitarsia decolora (Lepidoptera: Noctuidae) due to pre-exposure to sex pheromone and host plant volatiles. Florida entomologist, 101(1), 69–73. doi: 10.1653/024.101.0113.
56. Guo, X. J., Di, N., Chen, X., Zhu, Z. Y., Zhang, F., Tang, B., Dai, H. J., Li, J. T., Guo, R. & Wang, S. (2019). Performance of Trichogramma pintoi when parasitizing eggs of the oriental fruit moth Grapholita molesta. Generalis Entomology, 39, 239–249. doi: 10.1127/entomologia/2019/0853
57. Chen, L. H., Tian, K.; Xu, X. L., Fang, A. S., Cheng, W. N., Wang, G. R., Liu, W. & Wu, J. X. (2020). Detecting Host-Plant Volatiles with Odorant Receptors from Grapholita molesta (Busck) (Lepidoptera: Tortricidae). Current Microbiology, 68(9), 2711–2717. doi: 10.1021/acs.jafc.9b07305
58. Liu, C. M. & Kainoh, Y. (2020) Laboratory rearing of Lytopylus rufipes (Hymenoptera: Braconidae: Agathidinae), a parasitoid wasp of the oriental fruit moth, Grapholita molesta (Lepidoptera: Tortricidae), using apple and a commercially available diet. Applied Entomology and Zoology, 55(2), 271–276. doi: 10.1007/s13355-020-00671-0
59. Song, X. B., Zheng, W. F. & Ren, S. T. (1993). Investigation and prevention and control of the overwintering rule of oriental fruit moth. Shan Xi Forest Science and Technology, 59–61 (in Chinese).
60. Ferron, P. (1978). Biological control of insect pest by entomopathogenic fungi. Annual Review of Entomology, 23, 409–420. doi: 10.1146/annurev.en.23.010178.002205
61. Mora, M. A. E., Castilho, A. M. C. & Fraga, M. E. (2017). Classification and infection mechanism of entomopathogenic fungi. Agricultural Microbiology, 84, 1–10. doi: 10.1590/1808-1657000552015
62. Clark, R. A., Casagrande, R. A. & Wallace, D. B. (1982). Influence of pesticides on Beauveria bassiana, a pathogen of the Colorado potato beetle. Environmental Entomology, 11, 67–70.
63. Li, R. S. & Luo S. B. (1983). Microbial Control Pests. [M]. Beijing. Science Press, 27–45 (in Chinese).
64. Zimmermann, G. (2007). Review on safety of the entomopathogenic fungi Beauveria bassiana and Beauveria brongniartii. Biocontrol Science and Technology, 17(5/6), 553–596. doi: 10.1080/09583150701309006
65. Lewis, L. C., Bruch, D. J., Gunarson, R. D. & Bidne, K. G. (2001). Assessment of plant pathogenicity of endophytic Beauveria bassiana in Bt transgenic and non-transgenic corn. Crop Science, 41, 1395–1400. doi: 10.2135/cropsci2001.4151395x
66. Wanchoo, A., Lewis, M. W. & Keyhani, N. O. (2009). Lectin mapping reveals stage-specific display of surface carbohydrates of in vitro and haemolymph derived cells of the entomopathogenic fungus Beauveria bassiana. Microbiology, 155, 3121–3133. doi: 10.1099/mic.0.029157-0
67. De Hoog, G. S. (1972). The genera Beauveria, Isaria, Tritirachium and Acrodontium gen. nov. Transactions of the British Mycological Society, 1,1–41.
68. Huang, B., Li. C. R., Li, Z. G., Fan, M. Z. & Li, Z. Z. (2002). Molecular identification of the teleomorph of Beauveria bassiana. Mycotaxon, 81, 229–236. doi: 10.1002/iub.144
69. Kuang, Z. B., Lv, L. H. & Feng, X. (2005). Effects of temperature and common pesticides on the biological characteristics of Beauveria bassiana. Journal of South China Agricultural University, 26(3), 26–29. (in Chinese)
70. Guo, Z. F., Shao, H. B. & Liu, H. L. (2010). Study on biological characteristics of Beauveria bassiana strain B 11. Research on Hebei Forest Fruit, 25(1), 57–61. (in Chinese)
71. Boucias, D. G. & Pendland, J. C. (1998). Principles of insect pathology. Boston, MA: Kluwer Academic Publishers. 568.
72. Ferron, P. (1977). Influence of relative humidity on the development of fungal infection caused by Beauveria bassiana in imagines of Acanthoscelides obtectus (Coleoptera: Bruchidae). Entomophaga, 2, 393–396. doi: 10.5772/intechopen.81431
73. Portilla, M., Snodgrass, G., Luttrell, R. & Jaronski, S. (2014). A novel bioassay to evaluate the potential of Beauveria bassiana strain NI8 and the insect growth regulator novaluron against Lygus lineolaris on a non-autoclaved solid artificial diet. Journal of Insect Science, 14, 115–117. doi: 10.1093/jis/14.1.115
74. Hu, J. J. & Fan, M. Z. (1996). Relation between Extracellular Protease of Beauveria bassiana and Its Virulence to Dendrolinus Punctatus. Journal of Anhui Agricultural University, 23(3), 273–278. (in Chinese)
75. Johnson, D. L. & Goettel, M. S (1993). Reduction of grasshopper populations following field application of the fungus Beauveria bassiana. Biocontrol Science Technology, 3,165–175. doi: 10.1080/09583159309355273
76. Srivastava, N., Maurya, P., Sharma, P. & Mohan, L. (2009). Prospective role of insecticides of fungal origin: Review. Entomological Research, 39, 341–355. doi: 10.1111/j.1748-5967.2009.00244.x
77. Khush, R. S. & Lemaitre, B. (2000). Genes that fight infection: what the Drosophila genome says about animal immunity. Genetics of Drosophila immunity, 16(10), 442–449. doi: 10.1016/S0168-9525(00)02095-3
78. Hoffmann, J. A. & Reichhart, J. M. (2002). Drosophila innate immunity, an evolutionary perspective. Nature Immunology, 3, 121–126. doi: 10.1038/ni0202-121
79. Vey, A., Matha, V. & Dumas, C. (2002). Effects of the peptide mycotoxin destruxin E on insect haemocytes and on dynamics and efficiency of the multicellular immune reaction. Journal of Invertebrate Pathology, 80, 177–187. doi: 10.1016/S0022-2011(02)00104-0
80. Christophides, G. K., Zdobnov, E., Barillas-Mury, C., Birney, E., Blandin, S. & Blass, C. (2002). Immunity related genes and gene families in Anopheles gambiae. Science, 298, 159–165. doi: 10.1126/science.1077136
81. Hiromitsu, T., Ishibashi, J., Kosuke, F., Nakajima, Y., Sagisaka, A., Tomimoto, K., Suzuki, N., Yoshiyama, M., Kaneko, Y, Iwasaki, T., Sunagawa, T., Yamaji, K., Asaoka, A., Mita, K. & Yamakawa, M. (2008). A genome-wide analysis of genes and gene families involved in innate immunity of Bombyx mori. Insect Biochemistry and Molecular Biology, 38(12), 1087–1110. doi: 10.1016/j.ibmb.2008.09.001
82. Strand, M. R. & Clark, K. D. (1999). Plasmatocyte spreading peptide induces spreading of plasmatocytes but represses spreading of granulocytes. Archives of Insect Biochemistry and Physiology, 42, 213–223. doi: 10.1002/(SICI)1520-6327(199911)42:3<213::AID-ARCH5>3.0.CO;2-4.
83. Irving, P., Ubeda, J., Doucet, D., Troxler, L., Lagueux, M., Zachary, D., Hoffmann, J., Hetru, C. & Meister, M. (2005). New insights into Drosophila larval haemocyte functions through genome-wide analysis. Cellular Microbiology, 7(3), 335–350. doi: 10.1111/j.1462-5822.2004.00462.x
84. Lin, H. F., Hu, Z. & Li, Z. Z. (1998). Biological characteristics of Beauveria bassiana and its application in forest. Journal of Anhui Agricultural University, 26 (1), 54–58. (in Chinese).
85. Ren, J., Han, X. M., Liu, Z. & Lei, Z. G. (2013). Defense reaction of blood cells of whitefish against white fungus rigor. China vegetable, 12, 61–65 (in Chinese)
86. Gillespie, J. P., Bailey, A. M., Cobb, B. & Vilcinskas, A. (2000). Fungi as elicitors of insect immune responses. Archives of Insect Biochemistry and Physiology, 44, 49–68. doi: 10.1002/1520-6327(200006)44:2<49::AID-ARCH1>3.0.CO;2-F
87. Lemaitre, B. & Hoffmann, J. (2007). The Host Defense of Drosophila melanogaster. Annual review of Immunology, 25,697–743. doi: 10.1146/annurev.immunol.25.022106.141615
88. Govind, S. (2008). Innate immunity in Drosophila: Pathogens and pathways. Insect Science, 15, 29–43. doi: 10.1111/j.1744-7917.2008.00185.x
89. Dimopoulos, G., Richman, A., Muller, H. M. & Kafatos, F. (1997). Molecular immune responses of the mosquito Anopheles gambiae to bacteria and malaria parasites. Immunology, 94, 11508–11513.
90. Cudic, M., Condie, B.A., Weiner, D. J., Lysenko, E. S., Xiang, Z., Insug O, Bulet, P. & Otvos, L. J. (2002). Develop-ment of novel antibacterial peptides that kill resistant isolates. Peptides, 23(12), 2071–2083. doi: 10.1016/S0196-9781(02)00244-9
91. De Gregorio, E., Han, S. J. & Lee, W. J. 2002. An immune responsive Serpin regulates the melanization cascade in Drosophila. Developmental Cell, 3(4), 581–592. doi: 10.1016/S1534-5807(02)00267-8
92. Bulet, P. & Stöcklin, R. (2005). Insect antimicrobial peptides: structures, properties and gene regulation. Protein & Peptide Letters, 12, 3–11. doi: 10.2174/0929866053406011
93. Morisato, D. & Anderson, K. V., (1994). The spätzle gene encodes a component of the extracellular signaling pathway establishing the dorsal-ventral pattern of the Drosophila embryo. Cell, 76(4), 677–688.
94. Levashina, E. A., Ohresser, S., Bulet, P., Rechhart, J. M., Hetru, C. & Hoffmann, J. A. (1995). Metchnikowin, a novel immune inducible praline-rich peptide from Drosophila with antibacterial and antifungal properties. European Journal of Biochemistry, 233(2), 694–700.
95. Lemaitre, B., Nicolas, E., Michaut, L., Reichhart, J. M. & Hoffmann, J. A. (1996). The dorsoventral regulatory gene cassette spätzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell, 86, 95. doi: 10.1016/S0092-8674(00)80172-5
96. Akira, S., Uematsu, S. & Takeuchi, O. (2006). Pathogen recognition and innate immunity. Cell, 124(4), 783–801. doi: 10.1016/j.cell.2006.02.015
97. Ryu, J. H. & Ha, E. M. 2006. An essential complementary role of NF-kB pathway to microbicidal oxidants in Drosophila gut immunity. The EMBO Journal, 25, 3693–3701. doi: 10.1038/sj.emboj.7601233
98. Uvell, H. & Engstr, M. Y. (2007). A multilayered defense against infection: combinatorial control of insect immune genes. Trends in Genetics, 23(7), 342–349. doi: 10.1016/j.tig.2007.05.003
99. Ryu, J. H., Ha, E. M. & Lee, W. J. (2010). Innate immunity and gut–microbe mutualism in Drosophila. Developmental and Comparative Immunology, 34, 369–376. doi: 10.1016/j.dci.2009.11.010
100. Faria, M. & Wraight, S. P. (2001). Biological control of Bemisia tabaci with fungi. Crop Protection, 20(9), 767–778. doi: 10.1016/S0261-2194(01)00110-7
Published
2020-10-26
How to Cite
Cao, Z., Vlasenko, V., & Li, W. (2020). Development of biological control of oriental fruit moth and insect immune response induced by entomopathogenic fungi. Bulletin of Sumy National Agrarian University. The Series: Agronomy and Biology, 40(2), 79-86. https://doi.org/10.32782/agrobio.2020.2.10