PLANT PROBIOTICS: EFFECT ON CROPS UNDER STRESS

Keywords: probiotics, Zea mays L., drought stress, soil salinity stress, pathogens

Abstract

World agriculture is on the threshold of a new revolution. Farmers interested in using less mineral fertilizers and pesticides but still get a high yields. One of the tools that can help with this is plant probiotics. Therefore, the purpose of this article is to investigate the effects of beneficial microorganisms on crops, namely which bacteria or fungi can help control plants against stress from drought, salinity or pathogens. An important aspect of the study was also the information that microorganisms have a positive ffect on the absorption of nutrients by plants. All these factors negatively affect the cultivation of silage maize (Zea mays L.), especially in conditions of rapid climate change. Literary sources of foreign and native authors were analyzed for the research. As a result of the study, it was recommended that the drought stress in maize crops affects Azospirillum lipoferum. On saline soils, maize plants can survive stress better by plants inoculating with Pseudomonas syringae, Enterobacter aerogenes, P. fluorescens, Bacillus aquimaris, Serratia liquefaciens, Gracilibacillus, Staphylococcusus, Virgibacillus, Salinicocushe, Bacillus, Bacillus, Bacillus aquarium, etc. Pseudomonas fluorescens, Fusarium oxysporum, Fusarium verticillioides, Pseudomonas, Bacillus cereus have an effect on pathogens in maize crops. In mastering the corn plant nutrients affect Pseudomonas alcaligenes, Bacillus polymyxa, Mycobacterium phlei, Burkholderia, Bacillus spp., Herbaspirillum, Enterobacteriales, Streptomyces pseudovenezuelae, Ruminobacter amylophilus, Fibrobacter succinogenes, Enterococcus faecium, Arbuskulyarni mycorrhizal fungi, Enterobacter E1S2, Klebsiella MK2R2, Bacillus B2L2 , Azospirillum brasilence, Micromonospora, Streptomyces, Bacillus, Hyphomicrobium, Rhizobium, Azohydromonas spp., Azospirillum spp. and other. An interesting fact that was discovered as a result of this article was that some microorganisms can have a positive effect on the host plant in more than one direction, such as Pseudomonas fluorescens.

References

1. Abatenh, E., Gizaw, B., Tsegaye, Z., & Wassie, M. (2017). The role of microorganisms in bioremediation-A review. Open Journal of Environmental Biology, 2(1), 038‒046. doi: 10.17352/ojeb.000007
2. Abd El-Samad, H. M., & Abd El-Hakeem, K. N. S. (2019). Strategy Role of Mycorrhiza Inoculation on Osmotic Pressure, Chemical Constituents and Growth Yield of Maize Plant Gown under Drought Stress. American Journal of Plant Sciences, 10(6), 1102‒1120. doi: 10.4236/ajps.2019.106080
3. Agaras, B. C., Scandiani, M., Luque, A., Fernández, L., Farina, F., Carmona, M., Gally M., Romero A., Wall, L., & Valverde, C. (2015). Quantification of the potential biocontrol and direct plant growth promotion abilities based on multiple biological traits distinguish different groups of Pseudomonas spp. isolates. Biological Control, 90, 173‒186. doi: 10.1016/j.biocon-trol.2015.07.003.
4. Agaras, B. C., Wall, L. G., & Valverde, C. (2017). Pseudomonas Communities in Soil Agroecosystems. Chapter 6. In: Ad-vances in PGPR Research 1st ed. Edited by Harikesh B. Singh, Birinchi K. Sarma, Chetan Keswani. Boston, MA: CABI, 126‒147.
5. Ahmad, I., Ahmad, T. K. A., Basra, S. M., Hasnain, Z., & Ali, A. (2012). Effect of seed priming with ascorbic acid, salicylic acid and hydrogen peroxide on emergence, vigor and antioxidant activities of maize. African Journal of Biotechnology, 11(5), 1127‒1137. doi: 10.5897/AJB11.2266 6. Alori, E. T., Dare, M. O., & Babalola, O. O. (2017). Microbial inoculants for soil quality and plant health. In Sustainable agriculture reviews. Springer, Cham, 281‒307. doi: 10.1007/978-3-319-48006-0_9
7. Artyszak, A., & Gozdowski, D. (2020). The effect of growth activators and plant growth-promoting rhizobacteria (PGPR) on the soil properties, root yield, and technological quality of sugar beet. Agronomy, 10(9), 1262. doi: 10.3390/agronomy10091262 8. Aslam, F., & Ali, B. (2018). Halotolerant bacterial diversity associated with Suaeda fruticosa (L.) forssk. improved growth of maize under salinity stress. Agronomy, 8(8), 131. doi: 10.3390/agronomy8080131
9. Ayangbenro, A.S., & Babalola, O.O. (2021). Reclamation of arid and semi-arid soils: The role of plant growth-promoting archaea and bacteria. Current Plant Biology, 25. doi: 10.1016/j.cpb.2020.100173
10. Basanets,ʹ O. (2020). Growing corn (full technology). Superahronom. Access mode: https://superagronom.com/articles/367-viroschuvannya-kukurudzi-povna-tehnologiya (in Ukrainian)
11. Bildirici, N. (2020). Effects of probiotic bacteria on plants. In: Current researches in agriculture, forestry and aquaculture sciences. Edited by Prof. Atılgan Atılgan, Assoc. Prof. Burak Saltuk. Izmir. 167–181. 12. Borneman, J., & Becker, J. O. (2007). Identifying microorganisms involved in specific pathogen suppression in soil. Annual review of phytopathology, 45. 153‒172. doi: 10.1146/annurev.phyto.45.062806.094354
13. Bradáčová, K., Sittinger, M., Tietz, K., Neuhäuser, B., Kandeler, E., Berger, N., Ludewig, U., & Neumann, G. (2019). Maize inoculation with microbial consortia: contrasting effects on rhizosphere activities, nutrient acquisition and early growth in different soils. Microorganisms, 7(9), 329. doi: 10.3390/microorganisms7090329
14. Carrión, V. J., Cordovez, V., Tyc, O., Etalo, D. W., de Bruijn, I., de Jager, V., Medema, M. H., Eberl, L., & Raaijmakers, J. M. (2018). Involvement of Burkholderiaceae and sulfurous volatiles in disease-suppressive soils. The ISME journal, 12(9), 2307–2321. doi: 10.1038/s41396-018-0186-x
15. Carro, L., & Nouioui, I. (2017). Taxonomy and systematics of plant probiotic bacteria in the genomic era. AIMS microbiology, 3(3), 383–412. doi: 10.3934/microbiol.2017.3.383
16. Chukwuneme, C. F., Babalola, O. O., Kutu, F. R., & Ojuederie, O. B. (2020). Biochemical and Molecular Characterization, and Bioprospecting of Drought Tolerant Actinomycetes from Maize Rhizosphere Soil. bioRxiv. The print server for biology. doi: 10.1101/2020.05.13.094003
17. Ciccillo, F., Fiore, A., Bevivino, A., Dalmastri, C., Tabacchioni, S., & Chiarini, L. (2002). Effects of two different application methods of Burkholderia ambifaria MCI 7 on plant growth and rhizospheric bacterial diversity. Environmental Microbiology, 4(4), 238‒245.
18. Cohen, A. C., Travaglia, C. N., Bottini, R., & Piccoli, P. N. (2009). Participation of abscisic acid and gibberellins produced by endophytic Azospirillum in the alleviation of drought effects in maize. Botany, 87(5), 455‒462. doi: 10.1139/B09-023
19. Couillerot, O., Prigent-Combaret, C., Caballero-Mellado, J., & Moënne-Loccoz, Y. (2009). Pseudomonas fluorescens and closely‐related fluorescent pseudomonads as biocontrol agents of soil‐borne phytopathogens. Letters in Applied Microbiology, 48, 505‒512. doi: 10.1111/j.1472-765X.2009.02566.x
20. Dubey, A., Saiyam, D., Kumar, A., Hashem, A., Abd_Allah, E. F., & Khan, M. L. (2021). Bacterial Root Endophytes: Characterization of Their Competence and Plant Growth Promotion in Soybean (Glycine max (L.) Merr.) under Drought Stress. International Journal of Environmental Research and Public Health, 18(3), 931. doi: 10.3390/ijerph18030931
21. Dubey, R. K., Tripathi, V., Edrisi, Sheikh, A. E., Bakshi, M., Dubey, P. K., Singh, A., Verma, J. P., Singh, A., Sarma, B. K., Raskhit, A., Singh, D.P., Singh, H.B., & Abhilash, P.C. (2018). Role of plant growth-promoting microorganisms in sustainable agriculture and environmental remediation. Chapter 5. In: Advances in PGPR Research 1st ed. Edited by Harikesh B. Singh, Birinchi K. Sarma, Chetan Keswani. Boston, MA: CABI, 75‒125.
22. Dutta, J., & Bora, U. (2019). Rhizosphere microbiome and plant probiotics. In: New and Future Developments in Microbial Biotechnology and Bioengineering, 273‒281. doi: 10.1016/B978-0-12-818258-1.00018-2
23. Egamberdieva, D., Wirth, S., Bellingrath-Kimura, S. D., Mishra, J., & Arora, N. K. (2019). Salt-tolerant plant growth promoting rhizobacteria for enhancing crop productivity of saline soils. Frontiers in microbiology, 10, 2791. doi: 10.3389/fmicb.2019.02791
24. El-Esawi, M. A., Alaraidh, I. A., Alsahli, A. A., Alzahrani, S. M., Ali, H. M., Alayafi, A. A., & Ahmad, M. (2018). Serratia liquefaciens KM4 improves salt stress tolerance in maize by regulating redox potential, ion homeostasis, leaf gas exchange and stress-related gene expression. International journal of molecular sciences, 19(11), 3310. doi: 10.3390/ijms19113310
25. Elsayed, A., Fawzy, M. M., Gebreil, A. S., & Mowafy, A. M. (2019). Endophytes isolated from wheat and Phragmites and their effect on maize grain priming: project. [Electronic resource]. Access mode: https://www.researchgate.net/publication/334192892_Endophytes_isolated_from_wheat_and_Phragmites_and_their_effect_on_maize_grain_priming
26. Felten, A. (2010). The role of Pseudomonas fluorescens in the promotion of maize growth and health within a microbial consortium containing Azospirillum spp. and Glomus spp.: molecular tools to monitor P. fluorescens inoculants and the impact on native fluorescent pseudomo nads and mycotoxigenic fungi. (Doctoral dissertation, ETH Zurich). doi: 10.3929/ethz-a-006245281
27. Fernández, L., Agaras, B., Zalba, P., Wall, L. G., & Valverde, C. (2012). Pseudomonas spp. isolates with high phosphate-mobilizing potential and root colonization properties from agricultural bulk soils under no-till management. Biology and fertility of soils, 48(7), 763‒773. doi: 10.1007/s00374-012-0665-6
28. Fukami, J., Osa, K., Ollero, F.J., Megias, M., & Hungria, M. (2018). Co-inoculation of maize with Azospirillum brasilense and Rhizobium tropici as a strategy to mitigate salinity stress. Functional Plant Biology 45, 328‒339. doi: 10.1071/FP17167 29. Gomes, E. A., Lana, U. G. P., Quensen, J. F., Sousa, S. M., Oliveira, C. A., Guo, O. J., Guimarães, L. J. M., & Tiedje, J. M. (2018). Root-associated microbiome of maize genotypes with contrasting phosphorus use efficiency. Phytobiomes, 2(3), 129‒137 doi: 10.1094/PBIOMES-03-18-0012-R 30. Herschkovitz, Y., Lerner, A., Davidov, Y., Okon, Y., & Jurkevitch, E. (2005). Azospirillum brasilense does not affect popu-lation structure of specific rhizobacterial communities of inoculated maize (Zea mays). Environmental microbiology, 7(11), 1847‒1852. doi: 10.1111/j.1462-2920.2005.00926.x 31. Hussain, A., Zahir, Z. A., Ditta, A., Tahir, M. U., Ahmad, M., Mumtaz, M. Z., Hayat, K., & Hussain, S. (2020). Production and implication of bio-activated organic fertilizer enriched with zinc-solubilizing bacteria to boost up maize (Zea mays L.) production and biofortification under two cropping seasons. Agronomy, 10(1), 39. doi: 10.3390/agronomy10010039
32. Iyanyi, N. G. (2020). Identification of fungal organisms associated with the rhizosphere of maize (Zea mays L.): basic molecular techniques. Nigeria Agricultural Journal, 51(2), 399‒405.
33. Jansson, J. K., & Hofmockel, K. S. (2020). Soil microbiomes and climate change. Nature Reviews Microbiology, 18(1), 35‒46. doi: 10.1038/s41579-019-0265-7
34. Jarak, M., Mrkovački, N., Bjelić, D., Joscaron, D., Hajnal-Jafari, T., & Stamenov, D. (2012). Effects of plant growth promoting rhizobacteria on maize in greenhouse and field trial. African Journal of Microbiology Research, 6(27), 5683‒5690. doi: 10.5897/AJMR12.759
35. Kent, A. D., & Triplett, E. W. (2002). Microbial communities and their interactions in soil and rhizosphere ecosystems. Annual Reviews in Microbiology, 56(1), 211‒236.
36. Kharchenko, O., Zakharchenko, E., Kovalenko, I., Prasol, V., Pshychenko, O., & Mishchenko, Y. (2019). On problem of establishing the intensity level of crop variety and its yield value subject to the environmental conditions and constraints. AgroLife scientific journal, 8(1), 113‒119. 37. Mischenko, Y.G, Zakharchenko, E. A., Berdin, S. I., Kharchenko, O. V., Ermantraut, E. R., & Masyk, I. M. (2019). Herbo-logical monitoring of efficiency of tillage practice and green manure in potato agrocenosis. Ukrainian Journal of Ecology, 9(1), 209‒219.
38. Khokhar, S. N., Khan, M. A., Afzal, A., & Ahmed, R. (2006). Interaction of diazotrophs with phosphorussolubilizing bacteria: their effect on seed germination, growth and grain-yield of maize, under rainfed conditions. Int. J. Biol. Biotech, 3(4), 773‒777.
39. Kim, Y. C., & Anderson, A. J. (2018). Rhizosphere pseudomonads as probiotics improving plant health. Molecular plant pathology, 19(10), 2349‒2359. doi: 10.1111/mpp.12693
40. Kimmelshue, C., Goggi, A. S., & Cademartiri, R. (2019). The use of biological seed coatings based on bacteriophages and polymers against Clavibacter michiganensis subsp. nebraskensis in maize seeds. Scientific reports, 9(1), 1‒11. doi: 10.1038/s41598-019-54068-3
41. Kolisnyk O. M., Butenko A. O., Malynka L. V., Masik I. M., Onychko V. I., Onychko T. O., Kriuchko L. V., & Kobzhev, O. M. (2019). Adaptive properties of maize forms for improvement in the ecological status of fields. Ukrainian Journal of Ecology, 9(2), 33‒37.
42. Kremer, R. J. (2017). Biotechnology impacts on soil and environmental services. In: Soil Health and Intensification of Agroecosytems. Chapter 16. Editors: M. M. Al-Kaisi, B. Lowery, 353‒375. Elsevier. Academic Press. doi: 10.1016/B978-0-12-805317-1.00016-6
43. Kumar, S., & Singh, J. (2019). Impact of arbuscular mycorrhizal fungi (AMF) in global sustainable environments. In: Recent Advancement in White Biotechnology Through Fungi. 419‒436. Springer, Cham. doi: 10.1007/978-3-030-25506-0_17
44. Kupchyk, V. I., Ivanina, V. V., Nesterov, H. I., Tonkha, O. L., Li, M., & Metyu, H. (2007). Grunty Ukrayiny: vlastyvosti, henezys, menedzhment rodyuchosti [Soils of Ukraine: properties, genesis, fertility management]. Navchalnyy posibnyk. Kondor, Kyiv, 414 (in Ukrainian).
45. Lakshmanan, V., Selvaraj, G., & Bais, H. P. (2014). Functional soil microbiome: belowground solutions to an aboveground problem. Plant physiology, 166(2), 689‒700. doi: 10.1104/pp.114.245811
46. Li, H. Q., & Jiang, X. W. (2017). Inoculation with plant growth-promoting bacteria (PGPB) improves salt tolerance of maize seedling. Russian Journal of Plant Physiology, 64, 235‒241. doi: 10.1134/S1021443717020078
47. Liu, H., Macdonald, C. A., Cook, J., Anderson, I. C., & Singh, B. K. (2019). An ecological loop: host microbiomes across multitrophic interactions. Trends in ecology & evolution, 34(12), 1118‒1130. doi: 10.1016/j.tree.2019.07.011.
48. Lombardi, N., Vitale, S., Turrà, D., Reverberi, M., Fanelli, C., Vinale, F., Marra, R., Ruocco, M., Pascale, A., d’Errico, G., Woo, S. L., Lorito, M. (2018). Root exudates of stressed plants stimulate and attract Trichoderma soil fungi. Molecular Plant-Microbe Interactions, 31(10), 982‒994. doi: 10.1094/MPMI-12-17-0310-R
49. Majeed, A., Muhammad, Z., & Ahmad, H. (2018). Plant growth promoting bacteria: role in soil improvement, abiotic and biotic stress management of crops. Plant cell reports, 37(12), 1599-1609. https://doi.org/10.1007/s00299-018-2341-2
50. Manching, H. C., Carlson, K., Kosowsky, S., Smitherman, C. T., & Stapleton, A. E. (2017). Maize phyllosphere microbial community niche development across stages of host leaf growth. F1000Research, 6. doi: 10.12688/f1000research.12490.3
51. Marag, P. S., Suman, A., & Gond, S. (2018). Prospecting endophytic bacterial colonization and their potential plant growth promoting attributes in hybrid maize (Zea mays L.). Int. J. Curr. Microbiol. Appl. Sci., 7, 1292‒1304. doi: 10.20546/ijcmas.2018.703.154
52. Martínez-Álvarez, J. C., Castro-Martínez, C., Sánchez-Peña, P., Gutiérrez-Dorado, R., & Maldonado-Mendoza, I. E. (2016). Development of a powder formulation based on Bacilluscereus sensu lato strain B25 spores for biological control of Fusarium verticillioides in maize plants. World Journal of Microbiology and Biotechnology, 32(5), 75. doi: 10.1007/s11274-015-2000-5 53. Martínez-Hidalgo, P., Maymon, M., Pule-Meulenberg, F., & Hirsch, A. M. (2019). Engineering root microbiomes for healthier crops and soils using beneficial, environmentally safe bacteria. Canadian journal of microbiology, 65(2), 91‒104. doi: 10.1139/cjm-2018-0315
54. Mawarda, P. C., Le Roux, X., van Elsas, J. D., & Salles, J. F. (2020). Deliberate introduction of invisible invaders: A critical appraisal of the impact of microbial inoculants on soil microbial communities. Soil Biology and Biochemistry, 148. doi: 10.1016/j.soil-bio.2020.107874
55. Mazzola, M. (2004). Assessment and management of soil microbial community structure for disease suppression. Annu. Rev. Phytopathol., 42, 35‒59.
Published
2021-10-12
How to Cite
Дацько, О. М. (2021). PLANT PROBIOTICS: EFFECT ON CROPS UNDER STRESS. Bulletin of Sumy National Agrarian University. The Series: Agronomy and Biology, 43(1), 10-18. https://doi.org/10.32845/agrobio.2021.1.2