ECOLOGICAL FUNCTIONS AND ENVIRONMENTAL BENEFITS OF RESERVOIR RIPARIAN ZONE

Keywords: buffer zone; vegetation succession; arboreal forestland; soil properties; geochemical process

Abstract

Reservoir riparian zone is a special type of land use and a typical area of ecological vulnerability, which plays a key role in creation of environmental benefits, transportation of material energy and in the formation of the structure of groups, etc. Due to the special hydrologic rhythm of the reservoir, habitats of species are faced with the dual tasks of ecological degradation and high-quality water purification. In order to deal with these environmental problems, the key to the implementation and application of ecological restoration measures is to understand the regularity of vegetation succession and the management measures of adjacent forestland. The riparian zone is a hot spot of various nutrient processes and plays a disproportionate role in the development of ecological benefits. Hydrology is the key factor affecting the habitats’ formation of reservoir riparian zone. Сomprehend the geochemical process of soil in reservoir riparian zone and the transport and interception mechanism of nutrient elements can effectively reduce the damage to water body caused by non-point source pollution. In this paper, we reviewed the definition, classification and function of reservoir riparian zone, discussed the key role of vegetation in sphere of habitats’ restoration and reconstruction in reservoir riparian zone and the role of arbor forest species in the production of ecological benefits. This issue is especially relevant for China, a country with a large number of reservoirs. The purpose of this study is to provide comprehensive information on the the habitats’ characteristics and provide theoretical ideas for managing the ecological component of the environment. At present, the monitoring means of reservoir riparian zone are insufficient, and we are still concentrated in the macroscopic and mesoscale scale, while the microscopic scale needs to be further deepened. In the process of studying the riparian, we should pay enough attention to the investigation of the formation cause, geological environment and other factors, fully study the reservoir riparian zone from a unified organic and integral ecological point of view, pay attention to the rational use of high-tech means, and conduct reasonable monitoring with dynamic research means.

References

1. Altier, L. S., Lowrance, R. R., Williams, R. G., Inamdar, S. P., Bosch, D. D., Sheridan, J. M., Hubbard, R. K. & Thomas, D. L. (2000). Riparian ecosystem management model: simulator for ecological processes in riparian zones. Journal of Soil and Water Conservation, 55(1), 27–34.
2. Oldén, A., Peura, M., Saine, S., Kotiaho, J. S. & Halme, P. (2019). The effect of buffer strip width and selective logging on riparian forest microclimate. Forest Ecology and Management, 453, 117623. doi: 10.1016/j.foreco.2019.117623
3. Batlle-Aguilar, J., Brovelli, A., Porporato, A. & Barry, D. A. (2011). Modelling soil carbon and nitrogen cycles during land use change: a review. Agronomy for Sustainable Development, 31(2), 251–274. doi:10.1051/agro/2010007
4. Bell, C., McIntyre, N., Cox, S., Tissue, D. & Zak, J. (2008). Soil microbial responses to temporal variations of moisture and temperature in a Chihuahuan desert grassland. Microbial Ecology, 56, 153–167. doi: 10.1007/s00248-007-9333-z
5. Brevik, E. C., Cerdà, A., Mataix-Solera, J., Pereg, L., Quinton, J. N., Six, J. & Van Oost, K. (2015). The interdisciplinary nature of soil. Soil, 1, 117–129. doi: 10.5194/soild-1-429-2014
6. Bing, H. J., Zhou, J., Wu, Y. H., Wang, X. X., Sun, H. Y. & Li, R. (2016). Current state, sources, and potential risk of heavy metals in sediments of the Three Gorges Reservoir, China. Environment Pollution, 214, 485–496. doi: 10.1016/j.envpol.2016.04.062
7. Bronick, C. J. & Lal, R. (2005). Soil structure and management: a review. Geoderma, 124(1-2), 3–22. doi: 10.1016/j.geoderma.2004.03.005
8. Bruce, A. & Rutherfurd, I. D. (2001). The distribution and strength of riparian tree roots in relation to riverbank reinforcement. Hydrological Processes, 15(1), 63–79. doi: 10.1002/hyp.152
9. Cavagnaro, T. R., Jackson, L. E., Six, J., Ferris, H., Goyal, S., Asami, D. & Scow, K. M. (2006). Arbuscular mycorrhizas, microbial communities, nutrient availability, and soil aggregates in organic tomato production. Plant Soil, 282(1-2), 209–225. doi:10.1007/s11104-005-5847-7
10. Celentano, D., Rousseau, G. X., Engel, V. L., Zelarayán, M., Oliveira, E. C., Araujo, A. C. M. & de Moura, E. G. (2017). Degradation of Riparian Forest Affects Soil Properties and Ecosystem Services Provision in Eastern Amazon of Brazil. Land Degradation & Development, 28(2), 482–493. doi: 10.1002/ldr.2547
11. Chantigny, M. H. (2003). Dissolved and water-extractable organic matter in soils: a review on the influence of land use and management practices. Geoderma, 113(3-4), 357-380. doi:10.1016/S0016-7061(02)00370-1
12. Cheng, R. M., Wang, X. R., Xiao, W. F. & Guo, Q. S. (2010). Advances in studies on water-level-fluctuation zone. forest Science, 46(4), 111–119 (in Chinese)
13. Albano, C. M., Mcgwire, K. C., Hausner, M. B., Mcevoy, D. J. & Huntington, J. L. (2020). Drought Sensitivity and Trends of Riparian Vegetation Vigor in Nevada, USA (1985–2018). Remote Sensing, 12(9), 1362. doi: 10.3390/rs1209136 2
14. Coll, L., Ameztegui, A., Collet, C., Löf, M., Mason, B., Pach, M. & Ponette, Q. (2018). Knowledge gaps about mixed forests: what do european forest managers want to know and what answers can science provide?. Forest Ecology and Management, 407, 106–115. doi: 10.1016/j.foreco.2017.10.055
15. Crow, S. E., Lajtha, K., Bowden, R. D., Yano, Y., Brant, J. B., Caldwell, B. A. & Sulzman, E. W. (2009). Increased coniferous needle inputs accelerate decomposition of soil carbon in an old-growth forest. Forest Ecology and Management, 258(10), 2224–2232. doi:10.1016/j.foreco.2009.01.014
16. Curiel, Y. J., Baldocchi, D. D., Gershenson, A., Goldstein, A., Misson, L. & Wong, S. (2007). Microbial soil respiration and its dependency on carbon inputs, soil temperature and moisture. Globle Chang Biology, 13, 2018–2035. doi: 10.1111/j.1365-2486.2007.01415.x
17. Daly, K., Styles, D., Lalor, S. & Wall, D. P. (2015). Phosphorus sorption, supply potential and availability in soils with contrasting parent material and soil chemical properties. European journal of soil science, 66(4), 792–801. doi: 10.1111/ejss.12260
18. Davidson, E. A. & Janssens, I. A. (2006). Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature, 440, 165–173. doi: 10.1038/nature04514
19. Dent, D., Bagchi, R., Robinson, D., Majalap-Lee, N. & Burslem, D. (2006). Nutrient fluxes via litterfall and leaf litter decomposition vary across a gradient of soil nutrient supply in a lowland tropical rain forest. Plant&Soil, 288(1), 197-215. doi: 10.1007/s11104-006-9108-1
20. Dybala, K. E., Matzek, V., Gardali, T. & Seavy, N. E. (2019). Carbon sequestration in riparian forests: A global synthesis and meta-analysis. Global Change Biology, 25(1), 57–67. doi: 10.1111/gcb.14475
21. Woodward, K. B., Fellows, C. S., Mitrovic, S. M., & Sheldon, F. (2015). Patterns and bioavailability of soil nutrients and carbon across a gradient of inundation frequencies in a lowland river channel, murray-darling basin, Australia. Agriculture Ecosystems & Environment, 205, 1–8. doi: 10.1016/j.agee.2015.02.019
22. Fierer, N. & Schimel, J. P. (2002). Effects of drying-rewetting frequency on soil carbon and nitrogen transformations. Soil Biology&Biochemical, 34, 777–787. doi: 10.1016/S0038-0717(02)00007-X
23. Furey, P. C., Nordin, R. N. & Mazumder, A. (2004). Water level drawdown affects physical and biogeochemical properties of littoral sediments o f a reservoir and a natural lake. Lake and Reservoir Management, 20(4), 280–295. doi: 10.1080/07438140409354158
24. Gregory, S. V., Swanson, F. J., McKee, W. A. & Cummins, K. W. (1991). An Ecosystem Perspective of Riparian Zones. Bioscience, 41(8), 540–551. doi: 10.2307/1311607
25. Gornish, E. S., Lennox, M. S., David, L., Tate, K. W., Jackson, R.D. & Reinhart, K. O. (2017). Comparing herbaceous plant communities in active and passive riparian restoration. Plos One, 12(4), 58–64. doi: 10.1371/journal.pone.0176338
26. Greet, J., Ede, F., Robertson, D. & Mckendrick, S. (2020). Should I plant or should I sow? Restoration outcomes compared across seven riparian revegetation projects. Ecological Management & Restoration, 21(1), 58-65. doi:10.1111/emr.12396
27. Groffman, P. M. & Crawford, M. K. (2003). Denitrification potential in urban riparian zones. Journal of Environmental Quality, 32(3), 1144–1149. doi: 10.2134/jeq2003.1144
28. Guo, H. C., Huang, K., Liu, Y. & Yu, Y. J. (2007). Conceptual framework of riparian ecosystem management research and its key issues. Geographic research, 26(4), 789–798. (in Chinese).
29. Gu, L., Post, W. M. & King, A. W. (2004). Fast labile carbon turnover obscures sensitivity of heterotrophic respiration from soil to temperature: a model analysis. Global Biogeochemical Cycles, 18(1). doi:10.1029/2003gb002119
30. Guo, Q. S., Hong, M., Kang, Y., Pei, S. X. & Cheng, R. M. (2010). Research Development on Hydro-fluctuation Belt Plants. World forestry research, 23(4), 14–19. (in Chinese)
31. Gurnell, A.M., Bertoldi, W. & Corenblit, D. (2012). Changing River Channels: The Roles of Hydrological Processes, Plants and Pioneer Fluvial Landforms in Humid Temperate, Mixed Load, Gravel Bed Rivers. Earth-Science Reviews, 111(1), 129–141. doi: 10.1016/j.earscirev.2011.11.005
32. Hoag, J. C., Forrest, E. B., Sandra, K. W. & Robert W. S. (2001). Riparian/Wetland Project Information Series, 16 March. (Revised).
33. Hudson B. (1994). Soil organic matter and available water capacity. Journal of Soil and Water Conservation, 49, 189–193. doi: 10.2307/4002827
34. Hughes, F. M. R., Colston, A. & Mountford, J. O. (2005). Restoring Riparian Ecosystems: The Challenge of Accommodating Variability and Designing Restoration Trajectories. Ecology & Society, 10(1). doi:10.1016/j.ecolecon.2004.10.014
35. Hughes, F. M. R. & Rood, S. B. (2003). Allocation of river flows for restoration of floodplain forest ecosystems: a review of approaches and their applicability in Europe. Environ Manage, 32, 12–33. doi:10.1007/s00267-003-2834-8
36. Jackson, L. E, Burger, M. & Cavagnaro, T. R. (2008). Roots nitrogen transformations, and ecosystem services. Annual Review of Plant Biology, 59, 341–363. doi:10.1146/annurev.arplant.59.032607.092932
37. Carrick, J., Abdul Rahim, M. S. A. B., Adjei, C., Ashraa Kalee, H. H. H., Banks, S. J., Bolam, F. C. & Stewart, G. (2018). Is Planting Trees the Solution to Reducing Flood Risks?. Journal of Flood Risk Management, 12(S2), e12484. doi: 10.1111/jfr3.12484
38. Jian, Z., Ma, F., Guo, Q., Qin, A., Xiao, W. & Liu, J. (2018). Long-term responses of riparian plants’ composition to water level fluctuation in China’s Three Gorges Reservoir. Plos One, 13(11), e0207689. doi: 10.1371/journal.pone. 0207689
39. Junk, W. J., Ohly, J. J., Piedade, M. T. F. & Soares, M. G. M. (2000). The Central Amazon floodplain: actual use and options for a sustainable management. Backhuys Publishers, Netherlands.
40. Ju, W., Jing, M. C., Black, T. A., Barr, A.G., McCaughey, H., Rouleet & N. T. (2006). Hydrological effects on carbon cycles of Canada’s forests and wetlands. Tellus B, 58, 16–30. doi:10.3402/tellusb.v58i1.16795
41. Kardol, P., Bezemer, T. M. & Putten W. H. V. A. (2006). Temporal variation in plant-soil feedback controls succession. Ecology Letters, 9, 1080–1088. doi: 10.1111/j.1461-0248.2006.00953.x
42. Lavelle, P., Decaëns, T., Aubert, M., Barot, S., Blouin, M., Bureau, F. & Rossi, J. P. (2006). Soil invertebrates and ecosystem services. European Journal of Soil Biology, 42, 3-15. doi:10.1016/j.ejsobi.2006.10.002
43. Liu, W., Liu, G. & Zhang, Q. (2011). Influence of vegetation characteristics on soil denitrification in shoreline wetlands of the Danjiangkou Reservoir in China. Clean–Soil, Air, Water, 39, 109–115. doi: 10.1002/clen.200900212
44. Luo, F. L., Matsubara, S., Chen, Y., Wei, G. W., Dong, B. C., Zhang, M. X. & Yu, F. H. (2018). Consecutive submergence and de-submergence both impede growth of riparian plant during water level fluctuations with different frequencies. Environmental and Experimental Botany, 155, 641–649. doi:10.1016/j.envexpbot.2018.08.015
45. Lu, G., Xu, G. F., Liu, L. Q., Zhang, J. H., Li, H. P., Bai, M. E. & Hong, L. X. (2016). Achievement on Vegetation Restoration and Reconstruction on Water-level-fluctuating Zone in China. Zhejiang forestry science and technology, 36(1), 72–80 (in Chinese).
46. Lowrance, R., Hubbard, R. K. & Williams, R. G. (2000). Effects of a managed three zone riparian buffer system on shallow groundwater quality in the southeastern coastal plain. Journal of Soil and Water Conservation, 55(2), 212–220. doi: 10.1016/S0016-7061(99)00084-1
47. Li, Q. S., Wang, D. M., Xin, Z. B., Li, Y. & Ren, Y. (2014). Relationship between soil properties and root distribution of typical sites in the Land-water ecotone of Lijiang River. Journal of ecology, 34(8), 2003–2011. (in Chinese).
48. Li, S. Z., Deng, Y., Shi, F. N., Hu, M. M., Pang, B. H., Wang, Y. C., Li, K., Chen, M., Peng, W. Q., Qu, X. D., Bao, Y. F. & Meng, J. J. (2019). Research progress on water-level-fluctuation zones of reservoirs: A Review. Wetland science, 17(6), 689–696. (in Chinese).
49. Martínez-Arias, C., Sobrino-Plata, J., Macaya-Sanz, D., Aguirre, N. M., Collada, C., Gil, L. & Rodríguez-Calcerrada, J. (2020). Changes in plant function and root mycobiome caused by flood and drought in a riparian tree. Tree Physiology, 40(7), 886–903. doi: 10.1093/treephys/tpaa031
50. Mao,W. T., Li, T. Z., Gu, X. R., Song, Y., Wu, X. L., Li, Y. & Zeng, Q. P. (2016). Journal of southwest university (natural science edition), 38(3), 119–125. (in Chinese).
51. Manzoni, S., Jackson, R. B., Trofymow, J. A. & Porporato, A. (2008). The global stoichiometry of litter nitrogen mineralization. Science, 321, 684–686. doi:10.1126/science.1159792
52. Mayer, P. M., Reynolds, S. K., McCutchen, M. D. & Canfield, T. J. (2007). Meta-analysis of nitrogen removal in riparian buffers. J. Environ.Qual, 36, 1172–1180. doi:10.2134/jeq2006.0462
53. Merritt, D. M., Scott, M. L., Poff, N. L., Auble, G. T. & Lytle, D. A. (2010). Theory, methods and tools for determining environmental flows for riparian vegetation: riparian vegetation-flow response guilds. Freshwater Biology, 55(1), 206–225. doi:10.1111/j.1365-2427.2009.02206.x
54. Millar, C. I., Stephenson, N. L. & Stephens, S. L. (2007). Climate change and forest of the future: managing in the face of uncertainty. EcolAppl, 17, 2145–2151. doi: 10.1890/06-1715.1
55. Minshall, G. W. & Rugenski, A. (2007). Riparian processes and interactions. Methods in Stream Ecology, 2, 721–742. doi: 10.1016/B978-0-12-813047-6.00006-1
56. Misson, L., Tang, J., Xu, M., McKay, M. & Goldstein, A. (2005). Influences of recovery from clear-cut, climate variability, and thinning on the carbon balance of a young ponderosa pine plantation. Agriculture& Forest Meteorology, 130(3-4), 207–222. doi: 10.1016/j.agrformet.2005.04.001
57. Smith, M., Conte, P., Berns, A. E., Thomson, J. R. & Cavagnaro, T. R. (2012). Spatial patterns of, and environmental controls on, soil properties at a riparian-paddock interface. Soil Biology & Biochemistry, 49, 38–45. doi: 10.1016/j.soilbio.2012.02.007
58. Newbold, D., Herbert, S., Sweeney, B. W., Kiry, P. & Alberts, S. J. (2010). Water quality functions of a 15-year-old riparian forest buffer system. Jawra journal of the American water resources association, 46(2), 299–310. doi: 10.1111/j.1752-1688.2010.00421.x.
59. Nilsson, C., Brown, R., Jansson, R. & Merritt, D. M. (2010). The role of hydrochory in structuring riparian and wetland vegetation. Biological Reviews, 85(4), 837–858. doi: 10.1111/j.1469-185X.2010.00129.x
60. NRCS. (2010). Soil Quality for Environmental Health. United States Department of Agriculture.
61. Pal, S., Talukdar, S. & Ghosh, R. (2020). Damming effect on habitat quality of riparian corridor. Ecological Indicators, 114, 106300. doi: 10.1016/j.ecolind.2020. 106300
62. Parton, W. J., Schimmel, D. S., Cole, C. V. & Ojima, D. S. (1987). Analysis of factors controlling soil organic matter levels in great plains grasslands. Soil Science Society of American Journal, 51(5), 1173–1179. doi: 10.2136/sssaj1987.03615995005100050015x
63. Porporato, A., D’Odorico, P., Laio, F. & Rodriguez-Iturbe, I. (2003). Hydrologic controls on soil carbon and nitrogen cycles. I. modeling scheme. Advances in Water Resources, 26(1), 45–58. doi: 10.1016/S0309-1708(02)00094-5
64. Rasmussen, C., Southard, R. J. & Horwath, W. R. (2007). Soil mineralogy affects conifer forest soil carbon source utilization and microbial priming. Soil science society of America Journal, 71, 1141–1150. doi:10.2136/sssaj2006.0375
65. Rasmussen, C., Southard, R. J. & Horwath, W. R. (2010). Litter type and soil minerals control temperate forest soil carbon response to climate change. Global Chang Biology, 14(9), 2064–2080. doi:10.1111/j.1365-2486.2008.01639.x
66. Rieger, I. L., Friederike, K. I. & Cierjacks, A. (2014). The interplay of sedimentation and carbon accretion in riparian forests. Geomorphology, 214, 157–167. doi: 10.1016/j.geomorph.2014.01.023.
67. Robertson, A. I. & Rowling, R. W. (2015). Effects of livestock on riparian zone vegetation in an Australian dryland river. River Research & Applications, 16(5), 527-541. doi:10.1002/1099-1646(200009/10)16:5<527::AID-RRR602>3.0.CO;2-W
68. Rodriguez-Iturbe, I., Porporato, A., Laio, F. & Ridolfi, L. (2001). Plants in water-controlled ecosystems: active role in hydrologic processes and response to water stress. Advances in Water Resources, 24(7), 707–723. doi:10.1016/S0309-1708(01)00005-7
69. Roberts, W. M., George, T. S., Stutter, M. I., Louro, A., Ali, M. & Haygarth, P. M. (2019). Phosphorus leaching from riparian soils with differing management histories under three grass species. Journal of Environmental Quality, 49(2). doi: 10.1002/jeq2.20037
70. Sabater, S., Butturini, A., Clement, J. C., Burt, T., Dowrick, D., Hefting, M. & Sabater, F. (2003). Nitrogen removal by riparian buffers along a European climatic gradient: Patterns and factors of variation. Ecosystems, 6, 20–30. doi: 10.1007/s10021-002-0183-8
71. Seavy, N. E., Gardali, T., Golet, G. H., Griggs, F. T., Howell, C. A., Kelsey, R. & Weigand, J. F. (2009). Why climate change makes riparian restoration more important than ever: recommendations for practice and research. Ecol Restor, 27, 330–338. doi: 10.3368/er.27.3.330
72. Shen, Y. F., Wang, N., Liu, Z. B., Wang, X. R., Xiao, W. F. & Cheng, R. M. (2016). Changes of the Soil Chemical Properties in Hydro-fluctuation Belt of Three Gorges Reservoir, 30(3), 190–195. (in Chinese).
73. Souza, A. L. T., Fonseca, D. G., Libório, R. A. & Tanaka, M. O. (2013). Influence of riparian vegetation and forest structure on the water quality of rural low order streams in SE Brazil. Forest Ecology and Management, 298, 12–18. doi: 10.1016/j.foreco.2013.02.022
74. Striker, G. G., Casas, C., Kuang, X. & Grimoldi, A. A. (2017). No escape? Costs and benefits of leaf de-submergence in the pasture grass Chloris gayana under different flooding regimes. Functional Plant Biol, 44, 899-906. doi:10.1071/FP17128
75. Su, W. C., Yang, H., Zhao, C. Y. & Li, Q. (2005). A Preliminary Study on Land Exploitation and Utilization Models of Water-Level-Fluctuating Zone (WLFZ) in the Three Gorges Reservoir Area of Chongqing.Journal of Natural Resources, 20(3), 327–334 (in Chinese).
76. Su, X. L., Bejarano, M. D., Yi, X., Lin, F., Ayi, Q. & Zeng, B. (2020). Unnatural flooding alters the functional diversity of riparian vegetation of the Three Gorges Reservoir. Freshwater Biology, 65(9), 1585–1595. doi: 10.1111/fwb.13523
77. Sun, R., Yuan, X. Z. & Ding, J. J. (2010). Plant communities in water-level-fluctuationg-zone of Baijia Stream in Three Gorges Reservoir after its initiate impounding to 156 m height. Wetland Science, 8(1), 1–7 (in Chinese).
78. Tinkler, P.B, & Nye, P.H. (2000). Solute Movement in the Rhizosphere. Oxford University Press, Oxford, UK.
79. Vidon, P., Allan, C., Burns, D., Duval, T. P., Gurwick, N., Inamdar, S. & Sebestyen, S. (2010). Hot spots and hot moments in riparian zone: potential for improve water quality management. Journal of the American Water Resources Association, 46(2), 278–298. doi:10.1111/j.1752-1688.2010.00420.x
80. Vidon, P. G., Welsh, M. K. & Hassanzadeh, Y. T. (2019). Twenty Years of Riparian Zone Research(1997–2017):Where to Next? Journal of Environmental Quality, 48(2), 248–260. doi:10.2134/jeq2018.01.0009
81. Matzek, V., John, S. & Pearce, R. (2018). Development of a carbon calculator tool for riparian forest restoration. Applied Vegetation Science, 21(4), 584-594. doi:10.1111/avsc.12400
82. Volke, M. A., Johnson, W. C., Dixon, M. D. & Scott, M. L. (2019). Emerging reservoir delta-backwaters: biophysical dynamics and riparian biodiversity. Ecological Monographs, 89(3), e01363. doi:10.1002/ecm.1363
83. Walker, T. S., Bais, H. P., Grotewold, E. & Vivanco, J. M. (2003). Root exudation and rhizosphere biology. Plant Physiology, 132, 44–51. doi:10.1104/pp.102.019661
84. Wang, S., Cao, Z., Li, X., Liao, Z., Hu, B., Ni, J. & Ruan, H. (2013). Spatial-seasonal variation of soil denitrification under three riparian vegetation types around the Dianchi Lake in Yunnan, China. Environmental Science: Processes and Impacts, 15(5), 963–971. doi:10.1039/c3em30808a
85. Wang, Y. Y., Chen, F. Q., Zhang, M. & Chen, S. H. (2016). Response of Soil Nutrient Levels and Spatial Distribution to Waterlevel Fluctuation on the Shanmu Riverbanks in the Three Gorges Reservoir Area. Journal of water ecology, 37(3), 56–61. (in Chinese).
86. Wang, Y., Liu, Y. F., Liu, S. B. & Huang, H. W. (2005). Vegetation reconstruction in the Water-level-fluctuation zone of the Three Gorges Reservoir. Botany Bulletin, 22(5), 513–522 (in Chinese).
87. Wei, J., Feng, H., Cheng, Q., Gao, S. & Liu, H. (2017). Denitrification potential of riparian soils in relation to multiscale spatial environmental factors: a case study of a typical watershed, China. Environmental Monitoring & Assessment, 189(2), 85. doi: 10.1007/s10661-017-5805-x
88. Whigham, D. F. (1999). Ecological issues related to wetland preservation-restoration-creation and assessment. The Science of the Total Environment, 240(1), 32–40. doi: 10.1016/S0048-9697(99)00321-6
89. Woolway, R. I., Kraemer, B. M., Lenters, J. D., Merchant, C. J., O’Reilly, C. M. & Sharma, S. (2020). Global lake responses to climate change. Nature Reviews Earth & Environment, 1(8), 388–403. doi:10.1038/s43017-020-0067-5
90. Wright, A. J., de Kroon, H., Visser, E. J., Buchmann, T., Ebeling, A., Eisenhauer, N. & Mommer, L. (2017). Plants are less negatively affected by flooding when growing in species-rich plant communitei s. New Phytologist, 213(2), 645–656. doi:10.1111/nph.14185
91. Yang, W. B., Geng, Y. Q. & Wang, D. M. (2015). The activities of soil enzyme under different vegetation types in Li River riparian ecotones. Journal of ecology, 35(14), 4604–4612 (in Chinese).
92. Ye, C., Chen, C., Butler, O. M., Rashti, M. R., Esfandbod, M., Du, M., & Zhang, Q. ( 2019). Spatial and temporal dynamics of nutrients in riparian soils after nine years of operation of the Three Gorges Reservoir, China. The ence of the Total Environment, 664, 841–850. doi: 10.1016/j.scitotenv.2019.02.036
93. Zhang, A., Cornwell, W., Li, Z., Xiong, G., Yang, D. & Xie, Z. (2019). Dam effect on soil nutrients and potentially toxic metals in a reservoir riparian zone. CLEAN-Soil, Air, Water , 47(1), 1700497. doi: 10.1002/clen.201700497
94. Zhang, B., Fang, F., Guo, J., Chen, Y., Li, Z. & Guo, S. (2012). Phosphorus fractions and phosphate sorption-release characteristics relevant to the soil composition of water-level-fluctuation zone of Three Gorges Reservoir. Ecological Engineering, 40, 153–159. doi:10.1016/j.ecoleng.2011.12.024
95 .Zhang, H. & Zhu, P. (2005). Research on the Classification system of subsidence areas in Chongqing Reservoir Area of the Three Gorges based on RS and GIS - A case study of Kai County, Chongqing. Remote Sensing of Land resources, 16(3), 66–69 (in Chinese).
96. Zhang, J. C. & Peng, B. Z. (2002). Research on riparian zone and its ecological reconstruction, geography research, 21(3), 373–383 (in Chinese).
97. Zhong, X. Q., Xiong, G. P., Hu, W. L., Liu, W. B. & Wang, L. C. (2016). Preliminary report of mulberry planting experiment in the three gorges reservoir area. Silkworm communication, 36(4), 9–12 (in Chinese).
98. Zhang, Y. X. (2007). Ecological Restoration and Reconstruction of reservoir riparian zone. Guangxi University (in Chinese).
Published
2022-02-04
How to Cite
Yan, T., Kremenetska, Y., Wan, S., Hu, Q., & He, S. (2022). ECOLOGICAL FUNCTIONS AND ENVIRONMENTAL BENEFITS OF RESERVOIR RIPARIAN ZONE. Bulletin of Sumy National Agrarian University. The Series: Agronomy and Biology, 44(2), 73-82. https://doi.org/10.32845/agrobio.2021.2.10