HIGH-PERFORMANCE METHOD OF CEMENTATION OF STEEL PARTS BY ELECTRO SPARK ALLOYING METHOD

Keywords: electrospark alloying, productivity, graphite powder, steel, layer thickness, roughness

Abstract

The article presents a new method of cementing steel parts by electrospark alloying (EIL), which allows to increase the productivity of the cementation process and the wear resistance of its surface layer. The method differs in that graphite powder is used as the anode material, and the cathode is a part made of low-carbon or medium-carbon alloy steel. Alloying with graphite powder is carried out with a capacity of 0.028-0.056 min/cm2, with variations in discharge energy in the range of 0.6-4.3 J. When used as a cathode material steel 12X18H10T formed a surface layer of high hardness with a thickness of 4-5 to 100-150 μm, and when alloying 40X steel with a capacity of 0.044 minutes/cm2 and a discharge energy of 2.8 J, the surface layer of high hardness has a thickness of more than 0.15 mm. The surface roughness (Ra) corresponds to 0.6-0.7 μm.

References

1. Лахтин Ю. M., Леонтьева В. П. Материаловедение. - М.: Машиностроение, 1990. - 528 с.
2. Гаркунов Д.Н. Триботехника (износ и безызносность). - М.: «Издательство МСХА», 2001. - 616 с.
3. https://industrialmetallurgy.com/what-is-carburizing-and-its-types/
4. Электроискровое легирование металлических поверхностей / Гитлевич А.Е., Михайлов В.В., Парканский Н.Я., Ревутский В.М. / Кишинев: Штинца, 1985. - 196с.
5. Тарельник В.Б., Белоус А.В. Технология упрочнения поверхностей деталей машин методом электроэрозионной цементации // Вестник национального технического университета «ХПИ». – 2008. - №4. – С. 27-31.
6. Патент України на винахід № 82948, 23С 8/00. Спосіб цементації сталевих деталей електроерозійним легуванням/В.С. Марцинковский, В.Б. Тарельник, А.В. Белоус / Опубл. 25.03.2008, бюл. № 10.
7. V. B. Tarelnyk, O. P. Gaponova, G. V. Kirik, Ye. V. Konoplianchenko, N. V. Tarelnyk, and M. O. Mikulina, Cementationof Steel Detailsby Electrospark Alloying, Metallofiz. NoveishieTekhnol., 42, No. 5: 655–667 (2020) (in Ukrainian), DOI: 10.15407/mfint.42.05.0655.
8. V. Tarelnyk, O. Gaponova, V. Martsynkovskyy, Ie. Konoplianchenko, V. Melnyk, V. Vlasovets, A. Sarzhanov, N. Tarelnyk, DuXin, Yu. Semirnenko, S. Semirnenko, T. Voloshko, O. Semernya, "Energy Dispersive X-Ray Microanalysis of Part Surface Layer Carburized by Electric Spark Alloying," 2020IEEE 10th International Conference Nanomaterials: Applications & Properties (NAP), Sumy, Ukraine, 2020, pp. 01TFC13-1-01TFC13-9. (AddedtoIEEE Xplore: 06 January 2021) https://doi.org/10.1109/NAP51477.2020.9309618.
9. W. Wood, B. Adam, J. Kadali, R. Talla, and T. Langston, "Heat-Affected Zone Formation in Electrospark-Deposition Additive Manufacturing on Ultrahigh-Strength Steel," Materials Performance and Characterization 6, no. 3 (2017): 376-393. https://doi.org/10.1520/MPC20160038
10. Shevchenko, O.I. Ultrasound effect on electrospark cementation process (2020) IOP Conference Series: Materials Science and Engineering, 966 (1), art. no. 012071. https://doi.org/10.1088/1757-899X/966/1/012071
11. https://doi.org/10.25987/VSTU.2019.15.1.019
Published
2022-05-05
How to Cite
Konoplianchenko, I. V. (2022). HIGH-PERFORMANCE METHOD OF CEMENTATION OF STEEL PARTS BY ELECTRO SPARK ALLOYING METHOD. Bulletin of Sumy National Agrarian University. The Series: Mechanization and Automation of Production Processes, (2 (44), 17-20. https://doi.org/10.32845/msnau.2021.2.4