CHANGES IN THE MORPHOLOGICAL COMPOSITION OF THE HAEMOLYMPH OF UKRAINIAN STEPPE BEES WITH THE USE OF «EM® PROBIOTIC FOR BEES» IN AN ENTOMOLOGICAL CAGE EXPERIMENT

Keywords: Ukrainian steppe bees, «EM® PROBIOTIC FOR BEES», haemolymph, haemocytes, buckwheat honey syrup, sugar syrup

Abstract

Today, the mass death of bees is a current topic on a global scale. After all, these insects are the main pollinators of plants on our planet, thanks to them mankind receives products of plant origin, and apitherapy is increasingly used to maintain human health. Ukraine is one of the first countries which has significant contribution in the export of honey to Europe and other countries of the world. Therefore, it is important to maintain the health of bee colonies in good condition. The prevention of animal diseases, including those of bees, by improving their resistance is of paramount importance for veterinary welfare. The use of probiotics as an alternative means for the prevention and treatment of bacterial diseases of bees is a rather new trend. «EM® PROBIOTIC FOR BEES» is a preparation that, in addition to suppressing pathogenic and opportunistic microflora, also increases the resistance of bee families. Therefore, determining the effects of this probiotic on the morphological composition of the haemolymph of Ukrainian steppe bees of the winter generation was the main aim of the experiment. «EM® PROBIOTIC FOR BEES» was diluted in concentrations of 5%; 2,5%; 1,25% with buckwheat honey syrup solution and sugar syrup solution. Control groups of bees received native solutions of honey buckwheat syrup and sugar syrup. The morphological composition of bee haemolymph was studied by light microscopy (x1000) in 100 cells on days 7 and 10 of the experiment. By diluting «EM® PROBIOTIC FOR BEES» with buckwheat honey solution, it was found that the number of haemocytes in the haemolymph of all studied groups differed from the haemogram of the control group bees. A 5% concentration of probiotic stimulated the synthesis of spherulocytes in the haemolymph of bees, a 2,5% concentration activated the synthesis of different groups of immunocompetent cells, and a 1,25% concentration influenced the differentiation of prohemocytes into phagocytic cells capable of an immune reaction. In turn, the highest concentration of phagocytic cells (72,4 ± 0,45%) was observed in bees which received 1,25% solution of «EM® PROBIOTIC FOR BEES» diluted of sugar syrup solution. Thus, «EM® PROBIOTIC FOR BEES» has a stimulating and immune-stimulating effect on Ukrainian steppe bees of winter generation.

References

1. Glenny, W., Cavigli, I., Daughenbaugh, K. F., Radford, R., Kegley, S. E., & Flenniken, M. L. (2017). Honey bee (Apis mellifera) colony health and pathogen composition in migratory beekeeping operations involved in California almond pollination. PloS one, 12(8). doi: 10.1371/journal.pone.0182814.
2. VanEngelsdorp, D., Traynor, K. S., Andree, M., Lichtenberg, E. M., Chen, Y., Saegerman, C., & Cox-Foster, D. L. (2017). Colony Collapse Disorder (CCD) and bee age impact honey bee pathophysiology. PLoS One, 12(7). doi:10.1371/journal. pone.0179535.
3. Zacepins, A., Kviesis, A., Komasilovs, V., & Brodschneider, R. (2021). When It Pays to Catch a Swarm—Evaluation of the Economic Importance of Remote Honey Bee (Apis mellifera) Colony Swarming Detection. Agriculture, 11(10), 967. doi: 10.3390/agriculture11100967.
4. Sánchez-Bayo, F., Goulson, D., Pennacchio, F., Nazzi, F., Goka, K., & Desneux, N. (2016). Are bee diseases linked to pesticides?A brief review. Environment international, 89, 7-11. doi:10.1016/j.envint.2016.01.009.
5. Mishukovskaya, G. S., Giniyatullin, M. G., Kuznetsova, T. N., Smol'nikova, Ye. A., Naurazbayeva, A. I., & Giniyatullin, S. S. (2019). Rezul'taty sadkovykh opytov po ispol'zovaniyu probiotikov v podkormke pchel [Results of cage experiments on the use of probiotics in feeding bees]. Vestnik Bashkirskogo gosudarstvennogo agrarnogo universiteta, (1), 62-70. doi: 10.31563/1684-7628-2019-49-1-62-70 [in Russian].
6. Ptaszyńska, A. A., Borsuk, G., Zdybicka-Barabas, A., Cytryńska, M., & Małek, W. (2016). Are commercial probiotics and prebiotics effective in the treatment and prevention of honeybee nosemosis C?. Parasitology research, 115(1), 397-406. doi: 10.1007/s00436-015-4761-z.
7. Rodrigues, M. X., Yang, Y., de Souza Meira Jr, E. B., do Carmo Silva, J., & Bicalho, R. C. (2020). Development and evaluation of a new recombinant protein vaccine (YidR) against Klebsiella pneumoniae infection. Vaccine, 38(29), 4640-4648. doi: 10.1016/j.vaccine.2020.03.057.
8. Lakhman, A., Galatiuk, O., Romanishina, T., Behas, V., & Zastulka, O. (2021). Bees klebsiellosis: key aspects of pathogenesis. Adv. Anim. Vet. Sci, 9(8), 1190-1193. doi: 10.17582/journal.aavs/2021/9.8.1190.1193.
9. DeGruttola, A. K., Low, D., Mizoguchi, A., & Mizoguchi, E. (2016). Current understanding of dysbiosis in disease in human and animal models. Inflammatory bowel diseases, 22(5), 1137-1150. doi: 10.1097/mib.0000000000000750.
10. Tushak, S. (2018). Quantitative changes in hemogram of bees using probiotic «Enteronormin». Scientific Messenger of LNU of Veterinary Medicine and Biotechnologies. Series: Veterinary Sciences, 20(83), 61-65. doi: 10.15421/nvlvet8312.
11. Paytuví-Gallart, A., Sanseverino, W., & Winger, A. M. (2020). Daily intake of probiotic strain Bacillus subtilis DE111 supports a healthy microbiome in children attending day-care. Beneficial Microbes, 11(7), 611-620. doi: 10.3920/BM2020.0022.
12. Irkitova, A.N., Grebenshchikova, A.V., Matsyura, A.V. (2018). Antagonistic activity of Bacillus subtilis strains isolated from various sources. Ukrainian Journal of Ecology, 8(2), 354-364. doi: 10.15421/2018_354.
13. Daisley, B., Pitek, A., Chmiel, J., Al, K., Chernyshova, A., Faragalla, K., Burton, J., Thompson, G., Reid, G. (2020). Novel probiotic approach to counter Paenibacillus larvae infection in honey bees. The ISME journal, 14(2), 476-491. doi: 10.338/s41396-019-0541-6.
14. Tlak Gajger, I., Vlainić, J., Šoštarić, P., Prešern, J., Bubnič, J., & Smodiš Škerl, M. I. (2020). Effects on Some Therapeutical, Biochemical, and Immunological Parameters of Honey Bee (Apis mellifera) Exposed to Probiotic Treatments, in Field and Laboratory Conditions. Insects, 11(9), 638. doi:10.3390/insects11090638.
15. Gábor, E., Cinege, G., Csordás, G., Rusvai, M., Honti, V., Kolics, B., Török, T., Williams, M., Kurucz, É. & Andó, I. (2020). Identification of reference markers for characterizing honey bee (Apis mellifera) hemocyte classes. Developmental & Comparative Immunology, 109, 103701. doi: 10.1016/j.dci.2020.103701.
16. Barribeau, S. M., Sadd, B. M., du Plessis, L., Brown, M. J., Buechel, S. D., Cappelle, K., ... & Schmid-Hempel, P. (2015). A depauperate immune repertoire precedes evolution of sociality in bees. Genome biology, 16(1), 1-21. doi:10.1186/s13059-015-0628-y.
17. Burritt, N.J. Foss, E.C. Neeno-Eckwall, J.O. Church, A.M. Hilger, J.A. Hildebrand, D.M. Warshauer, N.T. Perna, J.B. (2016). Burritt Sepsis and hemocyte loss in honey bees (Apis mellifera) infected with Serratia marcescens strain sicaria. PLoS One, 1. doi: 10.1371/journal.pone.0167752.
18. Kysterna, O. S., Musiyenko, O. V., Harkava, V. V., Musiyenko, V. M. (2017). Tsytolohichni zminy v hemolimfi bdzholy medonosnoyi za vykorystannya imunnykh preparativ [Cytological changes in the hemolymph of the honey bee with the use of immune drugs]. Visnyk Sumsʹkoho natsionalʹnoho ahrarnoho universytetu. Seriya: Veterynarna medytsyna, 1 (40), 42-49 [in Ukrainian].
19. Morfin, N., Goodwin, P. H., & Guzman-Novoa, E. (2020). Interaction of Varroa destructor and sublethal clothianidin doses during the larval stage on subsequent adult honey bee (Apis mellifera L.) health, cellular immunity, deformed wing virus levels and differential gene expression. Microorganisms, 8(6), 858. doi: 10.3390/microorganisms8060858.
20. Kysterna, O. S., Harkava, V. V., & Musiyenko, O. V. (2014). Osoblyvosti pidhotovky mazkiv hemolimfy bdzholyimaho [Features of preparation of smears of hemolymph of an imago bee]. Biolohiya tvaryn, 16 (4), 188 [in Ukrainian].
21. Łoś, A., & Strachecka, A. (2018). Fast and cost-effective biochemical spectrophotometric analysis of solution of insect “blood” and body surface elution. Sensors, 18(5), 1494. doi: 10.3390/s18051494.
22. Barakat, E.M., AboKersh, M.O., Gomaa, S.A. (2016). Haemocyte Activity and Cellular Defense Reactions in Various Larval Instars of Honey Bee (Apis mellifera L.) following. Natural and Experimental Bacterial Infections. Greener Journal of Biological Sciences, 6 (2): 020-033. http://doi.org/10.15580/GJBS.2016.2.012016017.
23. Șapcaliu, A., Rădoi, I., Pavel, C., Tudor, N., Căuia, E., Siceanu, A., & Meiu, F. (2009). Research regarding haemocyte profile from Apis mellifera carpatica bee haemolymph originated in the south of Romania. Lucrari Stiintifice-Universitatea de Stiinte Agricole a Banatului Timisoara, Medicina Veterinara, 42(2), 393-397.
24. EMRO, Japan. Effective Microorganisms Research Organization, 1478-Kishaba, Kitanakagusuku-Sun, Nakagami-Gun, Okinawa 901–2311. Japan. URL:https://emrojapan.com
25. Zakon Ukrayiny: Pro zakhyst tvaryn vid zhorstokoho povodzhennya [Law of Ukraine: On protection of animals from cruel treatment] (redaktsiya vid 08.08.2021). Retrieved from https://zakon.rada.gov.ua/laws/show/3447-15#Text [in Ukrainian].
26. Yevropeyska konventsiya pro zakhyst khrebetnykh tvaryn, shcho vykorystovuyutsya dlya doslidnykh ta inshykh naukovykh tsiley [European Convention for the Protection of Vertebrate Animals Used for Research and Other Scientific Purposes], (redaktsiya vid 18.03.1986). Retrieved from https://zakon.rada.gov.ua/laws/show/994_137#Text [in Ukrainian].
27. Yazlovitskaya, L. S., Cherevatov, V. F., Savchuk, G. G., & Khlus, V. K. (2014). Tipologicheskiye osobennosti kletok gemolimfy pchel Apis Mellifera L., rayonirovannykh v Chernovitskoy oblasti [Typological features of hemolymph cells of APIS MELLIFERA L. bees, zoned in the Chernivtsi region]. Ekologicheskiy monitoring i bioraznoobraziye, (1), 134-138 [in Russian].
28. Richardson, R. T., Ballinger, M. N., Qian, F., Christman, J. W., & Johnson, R. M. (2018). Morphological and functional characterization of honey bee, Apis mellifera, hemocyte cell communities. Apidologie, 49(3), 397-410. doi: 10.1007/s13592-018-0566-2.
29. Shi, J., Yang, H., Yu, L., Liao, C., Liu, Y., Jin, M., Wu, X. B. (2020). Sublethal acetamiprid doses negatively affect the lifespans and foraging behaviors of honey bee (Apis mellifera L.) workers. Science of the Total Environment, 738. doi: 10.1016/j.scitotenv.2020.139924.
30. Danihlík, J., Aronstein, K., & Petřivalský, M. (2015). Antimicrobial peptides: a key component of honey bee innate immunity: Physiology, biochemistry, and chemical ecology. Journal of Apicultural Research, 54(2), 123-136. doi: 10.1080/00218839.2015.1109919
31. Hussain, M. B. (2018). Role of honey in topical and systemic bacterial infections. The Journal of Alternative and Complementary Medicine, 24(1), 15-24 doi: 10.1089/acm.2017.0017.
32. Saranraj, P., Sivasakthi, S., & Feliciano, G. D. (2016). Pharmacology of Honey: A Review. Advances in Biological Research, 10(4), 271-289. doi: 10.5829/idosi.abr.2016.10.4.104104
33. Fleischer, D. M., Chan, E. S., Venter, C., Spergel, J. M., Abrams, E. M., Stukus, D., ... & Greenhawt, M. (2021). A consensus approach to the primary prevention of food allergy through nutrition: guidance from the American Academy of Allergy, Asthma, and Immunology; American College of Allergy, Asthma, and Immunology; and the Canadian Society for Allergy and Clinical Immunology. The Journal of Allergy and Clinical Immunology: In Practice, 9(1), 22-43. doi: 10.1016/j.jaip.2020.11.002.
34. Ahmad, R. S., Hussain, M. B., Saeed, F., Waheed, M., & Tufail, T. (2017). Phytochemistry, metabolism and ethnomedical scenerio of honey: A concurrent review. International Journal of Food Properties, 1–16. doi: 10.1080/10942912.2017.1295257.
35. Ogrodowczyk, A. M., Zakrzewska, M., Romaszko, E., & Wróblewska, B. (2020). Gestational dysfunction-driven diets and probiotic supplementation correlate with the profile of allergen-specific antibodies in the serum of allergy sufferers. Nutrients, 12(8), 2381. https://doi.org/10.3390/nu12082381.
36. Larsen, A., Reynaldi, F. J., & Guzmán-Novoa, E. (2019). Fundaments of the honey bee (Apis mellifera) immune system. Review. Revista mexicana de ciencias pecuarias, 10(3), 705-728. https://doi.org/10.22319/rmcp.v10i3.4785
37. Saranchuk, I. I., Vishchur, V. Y., Gutyj, B. V., & Klim, O. Y. (2021). Effect of various amounts of sunflower oil in feed additives on breast tissues functional condition, reproductivity, and productivity of honey bees. Ukrainian Journal of Ecology, 11(1), 344-349. doi: 10.15421/2021_51
38. Frizzera, D., Del Fabbro, S., Ortis, G., Zanni, V., Bortolomeazzi, R., Nazzi, F., & Annoscia, D. (2020). Possible side effects of sugar supplementary nutrition on honey bee health. Apidologie, 51(4), 594-608. doi: 10.1007/s13592-020-00745-6.
39. Orčić, S., Nikolić, T., Purać, J., Šikoparija, B., Blagojević, D. P., Vukašinović, E., ... & Kojić, D. (2017). Seasonal variation in the activity of selected antioxidant enzymes and malondialdehyde level in worker honey bees. Entomologia Experimentalis et Applicata, 165(2-3), 120-128. doi: 10.1111/eea.12633.
40. Manoochehri, H., Hosseini, N. F., Saidijam, M., Taheri, M., Rezaee, H., & Nouri, F. (2020). A review on invertase: Its potentials and applications. Biocatalysis and Agricultural Biotechnology, 25, 101599. doi: 10.1016/j.bcab.2020.101599.
41. Barroso-Arévalo, S., Vicente-Rubiano, M., Puerta, F., Molero, F., & Sánchez-Vizcaíno, J. M. (2019). Immune related genes as markers for monitoring health status of honey bee colonies. BMC veterinary research, 15(1), 1-15. doi: 10.1186/s12917-019-1823-y.
42. EM-Ukraine (Effective microorganisms). Retrieved from http://embio.in.ua/bees.html [in Ukrainian].
43. Babazadeh, T., Nikbakhat, H. A., Daemi, A., Yegane-Kasgari, M., Ghaffari-Fam, S., & Banaye-Jeddi, M. (2016). Epidemiology of acute animal bite and the direct cost of rabies vaccination. Journal of Acute disease, 5(6), 488-492. doi: 10.1016/j.joad.2016.08.019.
44. Entrican, G., Lunney, J. K., Wattegedera, S. R., Mwangi, W., Hope, J. C., & Hammond, J. A. (2020). The Veterinary Immunological Toolbox: Past, Present, and Future. Frontiers in Immunology, 11, 1651. doi: 10.3389/fimmu.2020.01651.
45. Nasution, H., Sitompul, P., & Sinaga, L. P. (2021, March). Effect of the Vaccine on the Dynamics of Speread of Tuberculosis SIR Models. In Journal of Physics: Conference Series (Vol. 1819, No. 1, p. 012062). IOP Publishing. doi:10.1088/1742-6596/1819/1/012062.
46. Pashayan, S.A. Kalashnikova, M.V., Sidorova, K.A. Aktivnost' neytrofil'nykh fagotsitov gemolimfy pchel [Activity of neutrophilic phagocytes of bees' hemolymph]. Mezhdunarodnaya konferentsiya. Stavropol', 2011-12-12. Retrieved from www.stgau.ru/science/conference/internet-conference/.v20.pdf/ [in Russian].
47. Harwood, G., Salmela, H., Freitak, D., & Amdam, G. (2021). Social immunity in honey bees: royal jelly as a vehicle in transferring bacterial pathogen fragments between nestmates. Journal of Experimental Biology, 224(7). doi: 10.1242/jeb.231076.
Published
2021-11-29
How to Cite
Lakhman, A. R., GalatіukO. Y., RomanіshіnaT. А., & Behas, V. L. (2021). CHANGES IN THE MORPHOLOGICAL COMPOSITION OF THE HAEMOLYMPH OF UKRAINIAN STEPPE BEES WITH THE USE OF «EM® PROBIOTIC FOR BEES» IN AN ENTOMOLOGICAL CAGE EXPERIMENT. Bulletin of Sumy National Agrarian University. The Series: Veterinary Medicine, (3 (54), 39-47. https://doi.org/10.32845/bsnau.vet.2021.3.6