MONITORING OF PATHOGENS ANTIBIOTIC RESISTANCE OF THE BACTERIAL INFECTIONS OF POULTRY

Keywords: sensitivity, antibiotic resistance, isolates, antibacterial drugs

Abstract

Poultry breeding is one of the modern dynamic areas and a competitive type of agribusiness. The perspective and dynamism of this direction is determined by the high fertility and precociousness of the bird. China, France, Hungary and Germany are recognized as the leaders in poultry meat production in the world. This type of agribusiness is focused on the use of highly productive poultry crosses and modern breeding technologies. Epizootic welfare risks are very relevant due to the spread of antibiotic-resistant strains of bacterial pathogens. The problem associated with the irrational use of antibiotics. Resistance to antibiotics leads to a decrease in the effectiveness of therapeutic measures. The primary causes of this phenomenon are external factors that contribute to the genetic mutation of the bacterial cell, thereby suppressing the active ingredient of antibiotics, as well as irrational use of antibiotics in veterinary medicine. The article presents data on the spread of causative agents of duck bacteriosis in poultry farms in the northeastern part of Ukraine. From the samples, mainly an association of microorganisms (two and three isolates) from the Enterobacteriaceae family was isolated: E. coli, Salmonella enterica ser.Typhimurium, P.aeruginosa, Streptococcus spp., Staphylococcus spp., Proteus, Klebsiella, Citrobacter, Yersinia. The dominant share of isolates consisted of representatives of the genus Salmonella, namely S. Typhimurium – 41.14%. According to the results of the determination of isolated bacterial pathogens, a wide spectrum of antibacterial preparations is available. A high percentage of resistant isolates of E. coli, S. Typhimurium, P. aeruginosa, S. saprophyticus to a wide range of antibacterial drugs was established. The largest number of resistant isolates of E. coli was registered to cephalosporins (β-lactams) of the II and IV generations, carbopens. S. Typhimurium isolates had a high level of resistance to β-lactam antibacterial drugs: 76.9% to meropenem, 69.2% to ceftazidime, and 61.5% to cefotaxime. P.aeruginosa isolates were resistant to IV generation cephalosporins in 88.8%. The studied isolates were sensitive to antibacterial drugs of the group of aminoglycosides (≥ 90%) and fluoroquinolones (≥ 80%). In order to control bacterial diseases, the rational choice of therapeutic agents and the maximum effectiveness of their use based on determining the sensitivity of isolates to various pharmacological groups of antibacterial drugs were experimentally substantiated.

References

1. Abunna F, Bedasa, M., Beyene, T., Ayana, D., Mamo, B., & Duguma, R. (2017). Salmonella isolation and antimicrobial susceptibility tests on isolates collected from poultry farms in and around Modjo, Central Oromia, and Ethiopia. J Animal Poult Sci., 5:21–35.
2. Acharya, K.P., & Kaphle, K. (2015). Major issues for sustainable poultry sector in Nepal. Global J Anim Sci.;3(1):227–239.
3. Adhikari, S.K., Gyawali, A., & Shrestha, S. (2018). Molecular confirmation of Salmonella typhimurium in poultry from Kathmandu Valley. J Nepal Agric Res Counc.,4(1):86–89.
4. Ali Nazmi Can Doğan (2018). Antibacterial Effect of Hot Peppers (Capsicum annuum, Capsicum annuum var globriusculum, Capsicum frutescens) on Some Arcobacter, Campylobacter and Helicobacter Species. Pak Vet J, 38(3), 266–270. DOI: 10.29261/pakvetj/2018.057
5. Amen, O., Hussein, A., Ibrahim, R., & Ibrahim, R. S. (2019). Detection of antibiotics resistance genes in Staphylococcus aureus isolated from poultry farms. Assiut Veterinary Medical Journal, 65(163):1–9. doi: 10.21608/avmj.2019.166588.
6. Ashraf, S. (2019). Assessment of Refined Functional Carbohydrates as Substitutes of Antibiotic Growth Promoters in Broilers: Effects on Growth Performance, Immune Responses, Intestinal MicroFlora and Carcass Characteristics. Pak Vet J., 39(2), 157–162. doi: 10.29261/pakvetj/2019.040
7. Awogbemi, J., Adeyeye, M., & Akinkunmi, E. O. (2018). A survey of Antimicrobial agents usage in poultry farms and Antibiotic resistance in Escherichia coli and Staphylococci isolated from the poultry in Ile-lfe, Nigeria. Journal of infectious diseases and Epidemiology, 4(1): 1. doi: 10.23937/2474-3658/1510047
8. Badr, H., Roshdy, H., & Sorour, H. K. (2021). Phenotypic and genotypic characterization of Salmonella enterica serovars isolated from imported poultry. Journal Advanced Animal Veterinay Science, 9(5):1–11. doi: 10.17582/journal.aavs/2021/9.6.823.834
9. Badr, H., Soliman, M. A., & Nasef, S. A. (2020). Bacteriological and molecular study of Salmonella species associated with central nervous system manifestation in chicken flocks. Veterinary World.,13(10):2183–2190. doi: 10.14202/vetworld.2020.2183-2190.
10. Blyton, M.D., Pi, H., Vangchhia, B., Abraham, S., Trott, D.J., Johnson, J.R., & Gordon, D.M. (2015). Genetic structure and antimicrobial resistance of Escherichia coli and cryptic clades in birds with diverse human associations. Applied Environtal Microbiology, 81, 5123–5133.
11. Chechet, O. M., Karpulenko, M. S., Korniienko, L. Ye., Ukhovskyi, V. V., Moroz, O. A., Haidei, O. S., Hutyi, B. V., & Krushelnytska, O. V. (2022). Epizootolohichnyi analiz rozpovsiudzhennia salmonelozu ptytsi na terytorii Ukrainy za 2012–2021
roky [Epizootological analysis of the distribution of poultry salmonellosis in the territory of Ukraine for 2012–2021]. Naukovyi visnyk Lvivskoho natsionalnoho universytetu veterynarnoi medytsyny ta biotekhnolohii imeni S.Z. Gzhytskoho, 24 (106), 68–73 (in Ukrainian). doi: 10.32718/nlvet10611
12. CLSI/NCClS. Performance Standards for Antimicrobial Disk Susceptibility Tests. Wayne, PA, USA: CLSI; 2013. DOI 10.11603/1681-2727.2019.4.10965
13. Hafez, M. (2019). Enteric Diseases of Poultry with Special Attention to Clostridium perfringens. Pak Vet J., 31(3), 175–184.
14. Hamed, E.A., Abdelaty, M.F., Sorour, H.K., Roshdy, H.M., AbdelRahman, A.A, Magdy, O., Waleed A.I., Sayed, A.M., Hytham, Y., M., Wafaa M., & Badr, H. (2021). Monitoring of Antimicrobial Susceptibility of Bacteria Isolated from Poultry Farms from 2014 to 2018 Vet Med Int., 6739220. doi: 10.1155/2021/6739220
15. Hammer, K.A., Carson, C.F., & Riley, T.V. (2014). Antimicrobial activity of essential oils and other plant extracts. J. Appl. Microbiol., 86 (6), 985‒990.
16. Indranil, S., Joardar, S.N., & Das, P.K. (2018). Biosecurity Strategies for Backyard Poultry: A Controlled National Farm Biosecurity Manual for the Duck Industry (2020). Animal health Australia, 58. Available: https://www.farmbiosecurity.com.au/wp-content/uploads/2020/04/Farm-Biosecurity-Manual-for-the-Duck-Meat-Industry_2020.pdf
17. Ivleva, O.V., & Nalyvaiko, L.I. (2018). Poshyrennia zmishanykh infektsii ptytsi u pryvatnykh hospodarstvakh Ukrainy [Spread of mixed poultry infections in private farms of Ukraine]. Mizhvidomchyi tematychnyi naukovyi zbirnyk NNTs IEKVM. Veterynarna medytsyna, 104, 175–180 (in Ukrainian).
18. Lee, S.K., Choi, D., Chon, J.W., & Kun, H.S. (2016). Resistance of Strains Producing Extended-Spectrum β-Lactamases Among Salmonella from Duck Carcasses at Slaughterhouses in Three Major Provinces of South Korea. Foodborne Pathogens and Disease, 13 (3), 135–141.
19. Mund, M. D., Khan, U. H., Tahir, U., Mustafa, B.-E., & Fayyaz, A. (2017). Antimicrobial drug residue in poultry product and implications on public health; a review. International Journal of Food Properties,20(7):1433–1446. doi: 10.1080/10942912.2016.1212874.
20. Pal, P., Bhatta, R., Bhattarai, R., Acharya, P., Singh, S. & Harries, A. D. (2022). Antimicrobial resistance in bacteria isolated from the poultry production system in Nepal. Public Health Action., 12(4): 165–170. doi: 10.5588/pha.22.0014
21. Peterson, E., & Kaur, P. (2018). Antibiotic resistance mechanisms in bacteria: relationships between resistance determinants of antibiotic producers, environmental bacteria, and clinical pathogens. Frontiers in Microbiology. 2018;9:p. 1. doi: 10.3389/fmicb.2018.02928.2928
22. Pokharel, S., & Adhikari, B. (2020). Antimicrobial resistance and over the counter use of drugs in Nepal. J Glob Health.;10:010360.
23. Romaniuk, L.B., Kravets, N.I., Klymniuk, S.I., Kopcha, V.S., & Dronova O.I. (2019). Antybiotykorezystentnist umovno-patohennykh mikroorhanizmiv: aktualnist, umovy vynyknennia, shliakhy podolannia [Antibiotic-resistance of opportunistic microorganisms: topicality, conditions of emergency, ways of overcome]. Infektsiini khvoroby, 4(98), 63-71. DOI 10.11603/1681-2727.2019.4.10965
24. Sharma, S., Sharma, S., Fowler, P.D., Pant, D., Singh, K.S., & Wilkins, M.J. (2021). Prevalence of non-typhoidal Salmonella and risk factors on poultry farms in Chitwan, Nepal, Veterinary World,14(2):426–436.
25. Singh, A., Chhabra, D., & Sharda, R. (2019). Antibiotic resistance in E. coli isolated from. Poultry international journal of current Microbiology of applied science, 8(10):89–94. doi: 10.20546/ijcmas.2019.810.010.
26. Tae-Sik, K., Kim, G.-S., Son, J.-S., Lai, V.D. Mo In-Pil, & Jang, H. (2021). Prevalence, biosecurity factor, and antimicrobial susceptibility analysis of Salmonella species isolated from commercial duck farms in Korea. Poultry Science.https://reader.elsevier.com/reader/sd/pii/S0032579120309445?token=8726791FAE0B2BEBAF55A1BC1476DA35B2273235099106
27. The European Union One Health in 2018 Zoonoses Report European Food Safety Authority Journal, (2019). European Food Safety Authority Journal. DOI: https://doi.org/10.2903/j.efsa.2019.5926
28. Treviño, M., Losada, I., Fernández-Pérez, B., Coira, A., Peña-Rodríguez, M.F., & Hervada, X. (2016). Study Group SOGAMIC for the study of resistance in Galicia. Surveillance of antimicrobial susceptibility of Escherichia coli producing urinary tract infections in Galicia. Rev Esp Quimioter, 29, 86-90.
29. Vyznachennia chutlyvosti mikroorhanizmiv do antybakterialnykh preparativ [Determination of sensitivity of microorganisms to antibacterial drugs]. Metodychni vkazivky. (in Ukrainian). https://zakon.rada.gov.ua/rada/show/v0167282-07#Text
30. Wang, J., Sheng, H., Xu, W., Huang, J., Meng, L., Cao, C., Zeng, J., Meng, J., & Yang, B. (2019). Diversity of serotype, genotype, and antibiotic susceptibility of Salmonella prevalent in pickled ready-to-eat meat. Frontiers in Microbiology, 10:p. 15. doi: 10.3389/fmicb.2019.02577.2577
31. World Health Organization Global antimicrobial resistance and use surveil-lance system (GLASS) Geneva, Switzerland: WHO; 2021. https://www.who.int/initiatives/glass
32. Xi-Ran Wang, Lian, X.L., Su, T.T., Long, T.F, Li, M.Y., Feng, X.Y., Sun R.Y., Cui Z.H., Tang T., Xia J., Huang Liu Y.H., Liao X.P., Fang L.X., & Sun J. (2019). Duck wastes as a potential reservoir of novel antibiotic resistance genes. Science of The Total Environment, 771 (2021) 1452632.Available: https://www.sciencedirect.com/science/article/abs/pii/S0048969720383613?via%3Dihub
Published
2023-03-15
How to Cite
Kasianenko, O. I., Kasianenko, S. M., & Nesterenko, O. M. (2023). MONITORING OF PATHOGENS ANTIBIOTIC RESISTANCE OF THE BACTERIAL INFECTIONS OF POULTRY. Bulletin of Sumy National Agrarian University. The Series: Veterinary Medicine, (4(59), 24-32. https://doi.org/10.32845/bsnau.vet.2022.4.4