СТІЙКІСТЬ ДО АНТИБІОТИКІВ – ГЛОБАЛЬНА ПРОБЛЕМА В ІНДИКІВНИЦТВІ
Анотація
Розвиток і поширення явища стійкості до антибіотиків стало серйозною причиною для занепокоєння. За кілька останніх десятиліть не було вироблено ніяких великих нових типів антибіотиків, і майже всі відомі антибіотики все більше втрачають свою активність проти патогенних мікроорганізмів. Розвиток і поширення резистентності до антибіотиків поступово обмежує можливості лікування та профілактики більшості бактеріальних збудників, загрожуючи основним компонентам сучасної гуманної та ветеринарної медицини. Ненормоване використання антибіотиків у сфері лікування людей, тварин, птиці і навколишнього середовища, а також поширення резистентних бактерій і генів резистентності серед цих секторів і в усьому світі є факторами, що сприяють цьому. Антибіотики можуть потрапляти в навколишнє середовище з різних джерел, включаючи відходи людини, ветеринарні відходи та відходи тваринництва. Метою нашої роботи було визначити біохімічні властивості виділених культур з патматеріалу (трупів індиків різних вікових груп), та дослідити чутливість культур до антибактеріальних препаратів. Дослідження проводились на базі кафедри ветеринарно-санітарного інспектування, мікробіології, гігієни та патологічної анатомії. В дослідженнях використовували: бактеріологічний, патологоанатомічний, біохімічний методи. У статті наведені результати біохімічних властивостей мікроорганізмів групи E. coli та їх чутливість до найбільш вживаних у ветеринарній практиці препаратів. Виділені культури були оксидазонеативними, утворювали індол, не утворювали сірководень, давали негативну реакцію Фогеса-Проскауера, не утилізували цитрат. За морфологічними властивостями це були грамнегативні палички, продовгуватої форми, які розташовувалися в мазках поодиноко або попарно. При визначенні чутливості виділених штамів до антибактеріальних препаратів ми виявили, що 26,3 % виділених культур були резистентними до найпопулярніших антимікробних препаратів у ветеринарній практиці. Виділені культури E. coli найбільш резистентними були до групи антибактеріальних препаратів пеніцилінового ряду (87,7%), групи поліміксини (83,9 %) і макролідів (25,7 %).
Посилання
2. Amin, M. B., Sraboni, A. S., Hossain, M. I., Roy, S., Mozmader, T. A. U., Unicomb, L., Rousham, E. K., & Islam, M. A. (2020). Occurrence and genetic characteristics of mcr-1-positive colistin-resistant E. coli from poultry environments in Bangladesh. Journal of global antimicrobial resistance, 22, 546–552. https://doi.org/10.1016/j.jgar.2020.03.028
3. Bahram, M., Hildebrand, F., Forslund, S. K., Anderson, J. L., Soudzilovskaia, N. A., Bodegom, P. M., Bengtsson-Palme, J., Anslan, S., Coelho, L. P., Harend, H., Huerta-Cepas, J., Medema, M. H., Maltz, M. R., Mundra, S., Olsson, P. A., Pent, M., Põlme, S., Sunagawa, S., Ryberg, M., Tedersoo, L., … Bork, P. (2018). Structure and function of the global topsoil microbiome. Nature, 560(7717), 233–237. https://doi.org/10.1038/s41586-018-0386-6
4. Bai, H., He, L. Y., Wu, D. L., Gao, F. Z., Zhang, M., Zou, H. Y., ... & Ying, G. G. (2022). Spread of airborne antibiotic resistance from animal farms to the environment: dispersal pattern and exposure risk. Environment international, 158, 106927.
5. Beytur, A., Yakupogullari, Y., Oguz, F., Otlu, B., & Kaysadu, H. (2014). Oral amoxicillin-clavulanic Acid treatment in urinary tract infections caused by extended-spectrum Beta-lactamase-producing organisms. Jundishapur journal of microbiology, 8(1), e13792. https://doi.org/10.5812/jjm.13792
6. Bruinsma, N., Hutchinson, J. M., van den Bogaard, A. E., Giamarellou, H., Degener, J., & Stobberingh, E. E. (2003). Influence of population density on antibiotic resistance. The Journal of antimicrobial chemotherapy, 51(2), 385–390. https://doi.org/10.1093/jac/dkg072Bryskier, A. (2005). Antimicrobial agents: antibacterials and antifungals (pp. xxx+-1426).
7. Chng, K. R., Li, C., Bertrand, D., Ng, A. H. Q., Kwah, J. S., Low, H. M., Tong, C., Natrajan, M., Zhang, M. H., Xu, L., Ko, K. K. K., Ho, E. X. P., Av-Shalom, T. V., Teo, J. W. P., Khor, C. C., MetaSUB Consortium, Chen, S. L., Mason, C. E., Ng, O. T., Marimuthu, K., … Nagarajan, N. (2020). Cartography of opportunistic pathogens and antibiotic resistance genes in a tertiary hospital environment. Nature medicine, 26(6), 941–951. https://doi.org/10.1038/s41591-020-0894-4
8. Crofts, T. S., Gasparrini, A. J., & Dantas, G. (2017). Next-generation approaches to understand and combat the antibiotic resistome. Nature reviews. Microbiology, 15(7), 422–434. https://doi.org/10.1038/nrmicro.2017.28.
9. Duan, M., Gu, J., Wang, X., Li, Y., Zhang, R., Hu, T., & Zhou, B. (2019). Factors that affect the occurrence and distribution of antibiotic resistance genes in soils from livestock and poultry farms. Ecotoxicology and environmental safety, 180, 114–122. https://doi.org/10.1016/j.ecoenv.2019.05.005
10. Fotina T.I. (2016). Naiposhyrenishi khvoroby indykiv [The most common diseases of turkeys]. Zhurnal «Ptakhivnytstvo», 3(45), 88-90. [in Ukrainian].
11. Garcia-Migura, L., Hendriksen, R. S., Fraile, L., & Aarestrup, F. M. (2014). Antimicrobial resistance of zoonotic and commensal bacteria in Europe: the missing link between consumption and resistance in veterinary medicine. Veterinary microbiology, 170(1-2), 1–9. https://doi.org/10.1016/j.vetmic.2014.01.013
12. Gaucher, M. L., Perron, G. G., Arsenault, J., Letellier, A., Boulianne, M., & Quessy, S. (2017). Recurring Necrotic Enteritis Outbreaks in Commercial Broiler Chicken Flocks Strongly Influence Toxin Gene Carriage and Species Richness in the Resident Clostridium perfringens Population. Frontiers in microbiology, 8, 881. https://doi.org/10.3389/fmicb.2017.00881
13. Giguère, S. (2013). Lincosamides, pleuromutilins, and streptogramins. Antimicrobial therapy in veterinary medicine, 199-210.
14. Giguère, S. (2013). Macrolides, azalides, and ketolides. Antimicrobial therapy in veterinary medicine, 211-231.
15. Harbarth, S., Balkhy, H. H., Goossens, H., Jarlier, V., Kluytmans, J., Laxminarayan, R., Saam, M., Van Belkum, A., Pittet, D., & for the World Healthcare-Associated Infections Resistance Forum participants (2015). Antimicrobial resistance: one world, one fight!. Antimicrobial Resistance and Infection Control, 4, 49. https://doi.org/10.1186/s13756-015-0091-2
16. He, Y., Yuan, Q., Mathieu, J., Stadler, L., Senehi, N., Sun, R., & Alvarez, P. J. (2020). Antibiotic resistance genes from livestock waste: occurrence, dissemination, and treatment. NPJ Clean Water, 3(1), 4.
17. Hendriksen, R. S., Munk, P., Njage, P., van Bunnik, B., McNally, L., Lukjancenko, O., Röder, T., Nieuwenhuijse, D., Pedersen, S. K., Kjeldgaard, J., Kaas, R. S., Clausen, P. T. L. C., Vogt, J. K., Leekitcharoenphon, P., van de Schans, M. G. M., Zuidema, T., de Roda Husman, A. M., Rasmussen, S., Petersen, B., Global Sewage Surveillance project consortium, … Aarestrup, F. M. (2019). Global monitoring of antimicrobial resistance based on metagenomics analyses of urban sewage. Nature communications, 10(1), 1124. https://doi.org/10.1038/s41467-019-08853-3
18. Hutchings, M. I., Truman, A. W., & Wilkinson, B. (2019). Antibiotics: past, present and future. Current opinion in microbiology, 51, 72–80. https://doi.org/10.1016/j.mib.2019.10.008
19. Jiang, X., Ellabaan, M. M. H., Charusanti, P., Munck, C., Blin, K., Tong, Y., Weber, T., Sommer, M. O. A., & Lee, S. Y. (2017). Dissemination of antibiotic resistance genes from antibiotic producers to pathogens. Nature communications, 8, 15784. https://doi.org/10.1038/ncomms15784
20. Kaper, J. B., Nataro, J. P., & Mobley, H. L. (2004). Pathogenic Escherichia coli. Nature reviews. Microbiology, 2(2), 123–140. https://doi.org/10.1038/nrmicro818
21. Katz, L., & Baltz, R. H. (2016). Natural product discovery: past, present, and future. Journal of industrial microbiology & biotechnology, 43(2-3), 155–176. https://doi.org/10.1007/s10295-015-1723-5
22. Khan, S. A., Imtiaz, M. A., Sayeed, M. A., Shaikat, A. H., & Hassan, M. M. (2020). Antimicrobial resistance pattern in domestic animal - wildlife - environmental niche via the food chain to humans with a Bangladesh perspective; a systematic review. BMC veterinary research, 16(1), 302. https://doi.org/10.1186/s12917-020-02519-9
23. Kim, D. W., & Cha, C. J. (2021). Antibiotic resistome from the One-Health perspective: understanding and controlling antimicrobial resistance transmission. Experimental & molecular medicine, 53(3), 301–309. https://doi.org/10.1038/s12276-021-00569-z
24. Kytaieva, D.V., & Petrov, R.V. (2020). Vykorystannia probiotykiv pry vyroshchuvanni indykiv [Use of probiotics in growing turkeys]. NV LNU veterynarnoi medytsyny ta biotekhnolohii. Seriia: Veterynarni nauky, 22(100), 23-27. [in Ukrainian]. https://doi.org/10.32718/nvlvet10004
25. Lim, M. A., Kim, J. Y., Acharya, D., Bajgain, B. B., Park, J. H., Yoo, S. J., & Lee, K. (2020). A Diarrhoeagenic EnteropathogenicEscherichia coli (EPEC) Infection Outbreak That Occurred among Elementary School Children in Gyeongsangbuk-Do Province of South Korea Was Associated with Consumption of Water-Contaminated Food Items. International journal of environmental research and public health, 17(9), 3149. https://doi.org/10.3390/ijerph17093149
26. Liu, Y. Y., Wang, Y., Walsh, T. R., Yi, L. X., Zhang, R., Spencer, J., Doi, Y., Tian, G., Dong, B., Huang, X., Yu, L. F., Gu, D., Ren, H., Chen, X., Lv, L., He, D., Zhou, H., Liang, Z., Liu, J. H., & Shen, J. (2016). Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. The Lancet. Infectious diseases, 16(2), 161–168. https://doi.org/10.1016/S1473-3099(15)00424-7
27. Maciel-Guerra, A., Baker, M., Hu, Y., Wang, W., Zhang, X., Rong, J., Zhang, Y., Zhang, J., Kaler, J., Renney, D., Loose, M., Emes, R. D., Liu, L., Chen, J., Peng, Z., Li, F., & Dottorini, T. (2023). Dissecting microbial communities and resistomes for interconnected humans, soil, and livestock. The ISME journal, 17(1), 21–35. https://doi.org/10.1038/s41396-022-01315-7
28. Marshall, B. M., & Levy, S. B. (2011). Food animals and antimicrobials: impacts on human health. Clinical microbiology reviews, 24(4), 718–733. https://doi.org/10.1128/CMR.00002-11
29. Mazhar, S. H., Li, X., Rashid, A., Su, J., Xu, J., Brejnrod, A. D., Su, J. Q., Wu, Y., Zhu, Y. G., Zhou, S. G., Feng, R., & Rensing, C. (2021). Co-selection of antibiotic resistance genes, and mobile genetic elements in the presence of heavy metals in poultry farm environments. The Science of the total environment, 755(Pt 2), 142702. https://doi.org/10.1016/j.scitotenv.2020.142702.
30. McCarthy, A. J., Loeffler, A., Witney, A. A., Gould, K. A., Lloyd, D. H., & Lindsay, J. A. (2014). Extensive horizontal gene transfer during Staphylococcus aureus co-colonization in vivo. Genome biology and evolution, 6(10), 2697–2708. https://doi.org/10.1093/gbe/evu214
31. Mellata M. (2013). Human and avian extraintestinal pathogenic Escherichia coli: infections, zoonotic risks, and antibiotic resistance trends. Foodborne pathogens and disease, 10(11), 916–932. https://doi.org/10.1089/fpd.2013.1533
32. Mili, S. A., Islam, M. S., Al Momen Sabuj, A., Haque, Z. F., Pondit, A., Hossain, M. G., Hassan, J., & Saha, S. (2022). A Cross-Sectional Seroepidemiological Study on Infectious Bursal Disease in Backyard Chickens in the Mymensingh District of Bangladesh. Veterinary medicine international, 2022, 9076755. https://doi.org/10.1155/2022/9076755
33. Mingeot-Leclercq, M. P., Glupczynski, Y., & Tulkens, P. M. (1999). Aminoglycosides: activity and resistance. Antimicrobial agents and chemotherapy, 43(4), 727–737. https://doi.org/10.1128/AAC.43.4.727
34. Odoki, M., Aliero, A. A., Tibyangye, J., Maniga, J. N., Eilu, E., Ntulume, I., Wampande, E., Kato, C. D., Agwu, E., & Bazira, J. (2020). Fluoroquinolone resistant bacterial isolates from the urinary tract among patients attending hospitals in Bushenyi District, Uganda. The Pan African medical journal, 36, 60. https://doi.org/10.11604/pamj.2020.36.60.18832
35. Omura, S. (Ed.). (2002). Macrolide antibiotics: chemistry, biology, and practice. Elsevier.
36. Page, S. W., & Gautier, P. (2012). Use of antimicrobial agents in livestock. Revue scientifique et technique (International Office of Epizootics), 31(1), 145–188. https://doi.org/10.20506/rst.31.1.2106
37. Poirel, L., Jayol, A., & Nordmann, P. (2017). Polymyxins: Antibacterial Activity, Susceptibility Testing, and Resistance Mechanisms Encoded by Plasmids or Chromosomes. Clinical microbiology reviews, 30(2), 557–596. https://doi.org/10.1128/CMR.00064-16
38. Song, L., Wang, C., Jiang, G., Ma, J., Li, Y., Chen, H., & Guo, J. (2021). Bioaerosol is an important transmission route of antibiotic resistance genes in pig farms. Environment international, 154, 106559. https://doi.org/10.1016/j.envint.2021.106559
39. Van Boeckel, T. P., Pires, J., Silvester, R., Zhao, C., Song, J., Criscuolo, N. G., ... & Laxminarayan, R. (2019). Global trends in antimicrobial resistance in animals in low-and middle-income countries. Science, 365(6459), eaaw1944.
40. Van Boeckel, T. P., Pires, J., Silvester, R., Zhao, C., Song, J., Criscuolo, N. G., Gilbert, M., Bonhoeffer, S., & Laxminarayan, R. (2019). Global trends in antimicrobial resistance in animals in low- and middle-income countries. Science (New York, N.Y.), 365(6459), eaaw1944. https://doi.org/10.1126/science.aaw1944
41. Van Immerseel, F., De Buck, J., Pasmans, F., Huyghebaert, G., Haesebrouck, F., & Ducatelle, R. (2004). Clostridium perfringens in poultry: an emerging threat for animal and public health. Avian pathology : journal of the W.V.P.A, 33(6), 537–549. https://doi.org/10.1080/03079450400013162
42. Woolhouse, M. E., & Ward, M. J. (2013). Microbiology. Sources of antimicrobial resistance. Science (New York, N.Y.), 341(6153), 1460–1461. https://doi.org/10.1126/science.1243444
43. Zhang, Q., Zhang, Z., Lu, T., Peijnenburg, W. J. G. M., Gillings, M., Yang, X., Chen, J., Penuelas, J., Zhu, Y. G., Zhou, N. Y., Su, J., & Qian, H. (2020). Cyanobacterial blooms contribute to the diversity of antibiotic-resistance genes in aquatic ecosystems. Communications biology, 3(1), 737. https://doi.org/10.1038/s42003-020-01468-1
44. Zhu, T., Chen, T., Cao, Z., Zhong, S., Wen, X., Mi, J., Ma, B., Zou, Y., Zhang, N., Liao, X., Wang, Y., & Wu, Y. (2021). Antibiotic resistance genes in layer farms and their correlation with environmental samples. Poultry science, 100(12), 101485. https://doi.org/10.1016/j.psj.2021.101485
45. Zhu, Y. G., Zhao, Y., Li, B., Huang, C. L., Zhang, S. Y., Yu, S., Chen, Y. S., Zhang, T., Gillings, M. R., & Su, J. Q. (2017). Continental-scale pollution of estuaries with antibiotic resistance genes. Nature microbiology, 2, 16270. https://doi.org/10.1038/nmicrobiol.2016.270